Answer:
D
Explanation:
ive watched this on a national geo show. But remind me again what is 1 Au and 3DO AU i forgot...
This is a one-step unit analysis problem. Since we are staying in moles, grams of our compound, and thus molar mass, is not needed.
1 mole is equal to 6.022x10²³ particles as given, so:

<h3>
Answer:</h3>
2.49 mol
Let me know if you have any questions.
The quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
<h3>What is half life period? </h3>
The time taken by substance to reduce to its half of its initial concentration is called half life period.
We will use the half- life equation N(t)
N e^{(-0.693t) /t½}
Where,
N is the initial sample
t½ is the half life time period of the substance
t2 is the time in years.
N(t) is the reminder quantity after t years .
Given
N = 13g
t = 350 years
t½ = 1599 years
By substituting all the value, we get
N(t) = 13e^(0.693 × 50) / (1599)
= 13e^(- 0.368386)
= 13 × 0.691
= 8.98
Thus, we calculated that the quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
learn more about half life period:
brainly.com/question/20309144
#SPJ4
Answer:
The line drawn through points D and E.
Explanation:
Y is a horizontal line and D and E are both on the same line. If a line were drawn it would be within the Y plane.
<u>Answer:</u> The standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol
<u>Explanation:</u>
For the given chemical equation:

The expression of
for the given reaction:

We are given:

Putting values in above equation, we get:

To calculate the standard Gibbs free energy, we use the relation:

where,
= standard Gibbs free energy
R = Gas constant = 
T = temperature = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
= equilibrium constant in terms of partial pressure = 0.174
Putting values in above equation, we get:

Hence, the standard change in Gibbs free energy for the given reaction is 4.33 kJ/mol