Reproduction method, and cell structure.
Balanced Equation: H2SO4 + 2NaOH --> 2H2O + Na2SO4
Moles= Mass/RMM
= 65.5/40
= 1.6375
Mole Ratio = 2:2
= 1.6375
Mass (H2O) = 1.64 x 18
= 29.5 g
Answer:
We need 1.1 grams of Mg
Explanation:
Step 1: Data given
Volume of water = 78 mL
Initial temperature = 29 °C
Final temperature = 78 °C
The standard heats of formation
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Step 2: The equation
The heat is produced by the following reaction:
Mg(s)+2H2O(l)→Mg(OH)2(s)+H2(g)
Step 3: Calculate the mass of Mg needed
Using the standard heats of formation:
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Mg(s) + 2 H2O(l) → Mg(OH)2(s) + H2(g)
−924.54 kJ − (2 * −285.8 kJ) = −352.94 kJ/mol Mg
(4.184 J/g·°C) * (78 g) * (78 - 29)°C = 15991.248 J required
(15991.248 J) / (352940 J/mol Mg) * (24.3 g Mg/mol) = 1.1 g Mg
We need 1.1 grams of Mg
<span>Sulfuric acid has the highest production levels of any chemical in both the US and the world. The US alone creates 37 million tons a year. It has many uses, but one of the largest is as fertilizer.</span>