
![\qquad \tt \rightarrow \:Domain = [-9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ADomain%20%3D%20%5B-9%2C%20-1%5D)
![\qquad \tt \rightarrow \:Range = [-1 , 3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3ARange%20%3D%20%5B-1%20%2C%203%5D)
____________________________________

Domain = All possible values of x for which f(x) is defined
[ generally the extension of function in x - direction ]
Range = All possible values of f(x)
[ generally the extension of function in y - direction ]

![\qquad \tt \rightarrow \: domain = [ - 9, -1]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20domain%20%3D%20%5B%20-%209%2C%20-1%5D)
![\qquad \tt \rightarrow \: range= [ -1,3]](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctt%20%5Crightarrow%20%5C%3A%20range%3D%20%5B%20-1%2C3%5D)
Answered by : ❝ AǫᴜᴀWɪᴢ ❞
Answer:The answer is D
Step-by-step explanation:
23 - 20=3
(3 ➗ 20) *100
= 3 ✖ 5
=15%
Please make brainliest
Finishes studying at 4:10
starts playing at 4:10
finishes playing at 4:40
Answer:

Step-by-step explanation:
Given (64 y Superscript 100 Baseline) Superscript one-half.
Let us write it into an equation.

Apply radical rule:
and 
![\begin{aligned}\left(64 y^{100}\right)^{\frac{1}{2}} &=\sqrt[2]{64 y^{100}} \\&=\sqrt[2]{8^{2} y^{50} y^{50}} \\&=\sqrt[2]{8^{2}\left(y^{50}\right)^{2}} \\&=8 y^{50}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cleft%2864%20y%5E%7B100%7D%5Cright%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%26%3D%5Csqrt%5B2%5D%7B64%20y%5E%7B100%7D%7D%20%5C%5C%26%3D%5Csqrt%5B2%5D%7B8%5E%7B2%7D%20y%5E%7B50%7D%20y%5E%7B50%7D%7D%20%5C%5C%26%3D%5Csqrt%5B2%5D%7B8%5E%7B2%7D%5Cleft%28y%5E%7B50%7D%5Cright%29%5E%7B2%7D%7D%20%5C%5C%26%3D8%20y%5E%7B50%7D%5Cend%7Baligned%7D)
Hence,
is equivalent to (64 y Superscript 100 Baseline) Superscript one-half.