1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
docker41 [41]
3 years ago
15

The acceleration due to gravity on the Moon's surface is

Physics
1 answer:
Molodets [167]3 years ago
7 0

Answer:

50 lb

Explanation:

Given,

The weight of astronaut's life support backpack on Earth (w) = 300 lb

Acceleration due to gravity on Earth (g) = 9.8 m/s²

Acceleration due to gravity on Moon = g'

g'=\frac{g}{6}

We know that weight of an object on Earth is,

w = m\times g

m = \frac{w}{g}

Similarly, weight on Moon will be

w' = m\times g'

w' = \frac{w}{g}\times\frac{g}{6}

w' = \frac{300}{6}

w' = 50

Thus the astronaut's life support backpack will weigh 50 lb on Moon.

You might be interested in
When attempting to determine the coefficient of kinetic friction, why is it necessary to move the block with constant velocity
Readme [11.4K]

Answer:

Explanation:

In order to measure the coefficient of friction , we apply external force to move the body . When external force comes in motion , we adjust the external force so that it moves with zero acceleration or uniform velocity . In this case external force becomes equal to kinetic frictional force and then net force becomes zero because

net force = mass x acceleration = m x 0 = 0

Now frictional force = μ mg where μ is coefficient of kinetic friction

so F = μ mg where F is external force applied

μ = F / mg

Hence , to make external force equal to frictional force , it is necessary to make acceleration of body zero .

4 0
3 years ago
1. When you have different masses for each sphere, how does the force that the larger mass sphere exerts on the smaller mass sph
aleksandrvk [35]

1) The forces are equal (Newton's third law of motion)

2) The force between the spheres will quadruple

3) The force of gravity exerted by the notebook on you is negligible

Explanation:

1)

In this part of the problem, we want to compare the gravitational force exerted by the larger mass sphere on the smaller mass sphere to the force exerted by the smaller mass sphere to the larger mass sphere.

We can do this by using Newton's third law of motion, which states that:

<em>"When an object A exerts a force (called </em><em>action</em><em>) on an object B, then object B exerts an equal and opposite force (called </em><em>reaction</em><em>) on object A"</em>

In this problem, we can identify the larger mass sphere as object A and the smaller mass sphere as object B. This law tells us that the two forces are equal in magnitude and opposite in direction: therefore, the gravitational force exerted by the larger mass sphere on the smaller mass sphere is equal to the force exerted by the smaller mass sphere to the larger mass sphere.

2)

The magnitude of the gravitational force between the two spheres is given by

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m_1, m_2 are the masses of the two spheres

r is the separation between the two spheres

In this problem, we are asked to find what happens when the distance between the spheres is halved, therefore when the new distance is

r'=\frac{r}{2}

Substituting into the equation, we find

F'=G\frac{m_1 m_2}{r'^2}=G\frac{m_1 m_2}{(r/2)^2}=4(\frac{Gm_1 m_2}{r^2})=4F

So, the force between the two spheres will quadruple.

3)

We can give an estimate for the gravitational force exerted by your notebook on you.

As we said, the magnitude of the gravitational force is

F=G\frac{m_1 m_2}{r^2}

Where:

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

Let's estimate the following:

m_1 = 60 kg is your mass

m_2 = 2 kg is the mass of the notebook

r=1 m, assuming the notebook is at 1 metre from you

Substituting,

F=(6.67\cdot 10^{-11})\frac{(60)(2)}{1^2}=8.0\cdot 10^{-9} N

We see that this force has an extremely small value: therefore, it is almost negligible in daily life, where other much stronger forces act on you.

Learn more about gravity:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

8 0
3 years ago
A man does 4,780 J of work in the process of pushing his 2.70 103 kg truck from rest to a speed of v, over a distance of 25.5 m.
wolverine [178]

Answer:

(A) Velocity will be 1.88 m/sec

(b) Force will be 187.45 N

Explanation:

We have given work done = 4780 j

Distance d = 25.5 m

(A) Mass of the truck m = m=2.70\times 10^3kg

We know that kinetic energy is given  by

KE=\frac{1}{2}mv^2

So v=\sqrt{\frac{2KE}{m}}=\sqrt{\frac{2\times 4780}{2.7\times 10^3}}=1.88m/sec

(B) We know that work done is given by

W = Fd

So F=\frac{W}{d}=\frac{4780}{25.5}=187.45N

4 0
3 years ago
Match each situation
EastWind [94]
A: is potential
C: is losing kinetic energy and gaining potential energy
B: kinetic energy is at its highest
D: is loosing potential energy and gaining kinetic energy
3 0
2 years ago
Do magnets have to touch each other in order to experience a magnetic force
romanna [79]
No they do not they just need to be in each other's magnetic field
8 0
3 years ago
Read 2 more answers
Other questions:
  • A 45 kg boy runs at a rate of 2.5 m/s and jumps on top of a stationary skateboard that has a mass of 4 kg. After jumping onto th
    14·2 answers
  • To calculate the heat needed to melt a block of ice at its melting point what do you need to know
    8·1 answer
  • Movies and TV shows sometimes portray a person being thrown backwards a sizable distance as a result of being struck by a bullet
    8·1 answer
  • The following steps occur in rods when they are excited by photons of light. What is the proper sequence for these steps? 1. Mem
    6·1 answer
  • show that the value of g is independent to the mass of the free falling body. The weigh of the person on the earth is 72 kg wt,
    10·1 answer
  • How is motion converted to math
    10·1 answer
  • A physicist drops astone off the top of cliff over looking a lake. She hears the splash 4 second after releasing the stone?
    9·1 answer
  • Please help!!!!!!!!!!!!!!!!
    7·1 answer
  • Please help thank you!
    6·2 answers
  • what is our best hypothesis for why all the planets in our solar system orbit in the same direction as the sun rotates?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!