Answer:
The entire cart/hanging mass system follows the same law, ΣF = ma. This means that plotting force vs. acceleration yields a linear relationship (of the form y = mx).
Answer:
5.51 m/s^2
Explanation:
Initial scale reading = 50 kg
assume the greatest scale reading = 78.09 kg
<u>Determine the maximum acceleration for these elevators</u>
At rest the weight is = 50 kg
Weight ( F ) = mg = 50 * 9.81 = 490.5 N<u>
</u>
<u>
</u>At the 10th floor weight = 78.09 kg
Weight at 10th floor ( F ) = 78.09 * 9.81 = 766.11 N
F = change in weight
Change in weight( F ) = ma = 766.11 - 490.5 (we will take the mass as the starting mass as that mass is calculated when the body is at rest)
50 * a = 275.61
Hence the maximum acceleration ( a ) = 275.61 / 50 = 5.51 m/s^2
Answer:
wut goes up must come down i dunno lol
Explanation:
Answer:
Tension, T = 0.0115 N
Explanation:
Given that,
Mass of the plastic ball, m = 1.1 g
Length of the string, l = 56 cm
A charged rod brought near the ball exerts a horizontal electrical force F on it, causing the ball to swing out to a 21.0 degree angle and remain there. According to attached figure :
T is tension in the string
So, the tension in the string is 0.0115 N.