Answer:
- <u>77.8 m/s, downward</u>
Explanation:
For uniform acceleration motion, the average speed is equal to half the soum of the initial velocity, Vi, and the final velocity, Vf
- Average speed = (Vf + Vi)/2
Also, by definition, the average speed is the distance divided by the time:
- Average speed = distance / time
Then:
Other kinematic equation for uniform acceleration is:
Since the window is falling and the air resistance is ignored, a = g (gravitational acceleration ≈ 9.8m/s²)
Replacing the known values we can set a system of two equations:
From (Vf + Vi)/2 = 300m/6.62s
(Vf + Vi) = 2 × 300m/6.62s
- Vf + Vi = 90.634 equation 1
From Vf = Vi + a×t
Vf - Vi = 9.8 (6.62)
- Vf - Vi = 64.876 equation 2
Adding the two equations:
- Vf = 77.8 m/s downward (velocities must be reported with their directions)
If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!
Typically occurs when we associate things to other things that look alike. We see that in many experiments, specifically “Little Albert” who was conditioned to be afraid of rats but later was afraid of anything that resembled that of a rat.
Hope this helps!
Answer:
option (C)
Explanation:
The amount of heat required to raise the temperature of substance of unit mass by unit degree is called specific heat of that substance.
Its SI unit is Joule / Kg °C.
Every material has a constant value of specific heat.
So, option (c) is correct.