A frog can be many different colours. It appears green under normal 'white' light because it absorbs all the other colours in the light's spectrum apart from green. It reflects the green light back and that is picked up by your eye.
If the light is red, there is no green in the spectrum of the light, only red. So, the red light will be absorbed and there is no green to be reflected back for you to see. Therefore, the frog will not look green.
Answer:
6200 J
Explanation:
Momentum is conserved.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
The car is initially stationary. The truck and car stick together after the collision, so they have the same final velocity. Therefore:
m₁ u₁ = (m₁ + m₂) v
Solving for the truck's initial velocity:
(2700 kg) u = (2700 kg + 1000 kg) (3 m/s)
u = 4.11 m/s
The change in kinetic energy is therefore:
ΔKE = ½ (m₁ + m₂) v² − ½ m₁ u²
ΔKE = ½ (2700 kg + 1000 kg) (3 m/s)² − ½ (2700 kg) (4.11 m/s)²
ΔKE = -6200 J
6200 J of kinetic energy is "lost".
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Answer: See explanation
Explanation:
Inertia is the force that keeps an object at rest. Inertia is referred to as the property which results in it continuing in the state of rest that it is unless there's an external force that acts upon it.
Inertia keeps objects and things in place and it holds the universe together. When there's no force that's acting in an object, such object will continue to move in a straight line and also at a constant speed.