Explanation:
where is the question
I did not understood this question
Answer:
an electromagnetic wave with a wavelength in the range 0.001–0.3 m, shorter than that of a normal radio wave but longer than those of infrared radiation. Microwaves are used in radar, in communications, and for heating in microwave ovens and in various industrial processes.
Answer:
7.5 km/h (2.1 m/s) due east
Explanation:
The average velocity of the person is given by:

where
d is the displacement
t is the time taken
In this problem,
d = 15 km is the displacement
t = 2.0 h is the time elapsed
so the average velocity is

and the direction is the same as the displacement (east).
We can also convert the velocity into SI units (m/s). We have:
d = 15 km = 15,000 m
t = 2.0 h * 3600 s/h = 7200 s

An element refers to a collection of atoms having the same number of protons and electrons (an atomic number). In each element there is a different atomic number due to a different amount of protons in the nucleus.
An isotope is a variation of an element that contains a different number of neutrons, therefore adding weight to the atom.
An ion is a charged atom, and its charge shows how many electrons it needs to gain or lose in order to become stable.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3