Answer:
IS TWICE THAT OF THE GRAVITATIONAL FORCE BETWEEN THE SMALLER ASTEROID AND THE SUN
Explanation:
The equation for gravitational force is:

where G is the gravitational constant.
Given that distance remains constant, and the mass of the bigger asteroid is bigger, we can get the following relation:

Here we can see that multiplying the mass by 2 gives us 2 times the gravitational force for the bigger asteroid.
Thus, the gravitational force for the bigger asteroid and the sun is two times that of the smaller asteroid and the sun.
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
"Acceleration" is the rate at which velocity changes.
So "constant velocity" is a very good definition of "no acceleration".
Choice-B is the correct one.
Answer:
Total kinetic energy of entire system is 3 mgl
Explanation:
Given two masses: m and 4m.
Since the pulley is frictionless and the thread is massless, the energy here is linked to the two masses.
Total kinetic energy of entire system = decrease in gravitational potential energy of the system.
Therefore, we have :
ΔKE = Δp
ΔKE = 4mgl - mgl
= 3 mgl
Total kinetic energy of entire system is 3 mgl