a.
The work done by a constant force along a rectilinear motion when the force and the displacement vector are not colinear is given by:

where F is the magnitude of the force, theta is the angle between them and d is the distance.
The problen gives the following data:
The magnitude of the force 750 N.
The angle between the force and the displacement which is 25°
The distance, 26 m.
Plugging this in the formula we have:

Therefore the work done is 17673 J.
b)
The power is given by:

the problem states that the time it takes is 6 s. Then:

Therefore the power is 2945.5 W
Answer:
a) 500
b)-500, north west
Explanation:
a) sum of F= F1+F2= 200+300= 500
b) sum of forces=0
so 200+300-500+0
Answer:
0.80 m
Explanation:
elastic potential energy formula
elastic potential energy = 0.5 × spring constant × (extension) 2
Answer:
The magnitude of the torque is 263.5 N.
Explanation:
Given that,
Applied force = 31 N
Distance from the axis = 8.5 m
She applies her force perpendicularly to a line drawn from the axis of rotation
So, The angle is 90°
We need to calculate the torque
Using formula of torque

Where, F = force
d = distance
Put the value into the formula


Hence, The magnitude of the torque is 263.5 N.
Gravitational potential energy -> Kinetic energy -> Mechanical energy -> Electrical energy.
The water starts up (potential) and flows down (kinetic), the flowing water turns a big wheel (mechanical) which creates electricity (electrical).