Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A</span>
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Answer:
15
Explanation:
mass, M = 5Kg
horizontal force, F_h = 40N
acceleration, a =5 m/s^2
frictional force, F_f =?
net force = ma
net force = F_h - F_f = 40N - F_f
40 - F_f = 5 x 5
- F_f = 25 - 40
multiply both side by -1
F_f = 40 - 25 = 15
the frictional force is 15N
The object represented by this graph is moving toward the origin at constant velocity.
Option 3.
<u>Explanation:</u>
In the figure, x-axis is representing increase in the time and y-axis is presenting increase in the distance from bottom to up. But the line in the graph which is plotted is decreasing from high distance to small distance with increase in time. So this indicates that as the time is increasing, the distance is decreasing.
And the object is moving toward the origin as the distance of the object motion is found to decrease with increase of time as per the graph. But the slope of the graph is found to be almost constant, this indicates that the velocity of the object is constant. Thus, the object represented by this graph is moving toward the origin at constant velocity.