Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.
Answer:
Part A:
"360 grams of NaCl can be dissolved in 1 L water. So, 2000 grams sugar can be dissolved in 1 L water then we can say that the solubility of salt is lesser in water as to sugar and both heightened by increasing the temperature. If we make a batch of 800 L we can add sugar, 1600 kg at 25 0c. We can add salt is 288 kg at 25 0c and the ingredient tomato is having low solubility."
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/8061-describe-the-sequence-of-adding-ingredients-to-make-the-recipe.html
Part B:
'Manufacturers can generate new value minimize cost and increase operational stability by focusing on 4 broad areas; Management, Supply Circle, Product Design, and Value Recovery.'
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/2807911-what-changes-could-be-made-to-optimize-the-manufacturing-process.html
Answer:
4.52×10^24
Explanation:
N = n × Na
where; N = no. of bananas
n = no. of moles
Na = Avogadro's constant
Which is 6.02×10^23
N = 7.5 × 6.02×10^23
N =4.515×10^24
The question requires us to explain the differences in radii of neutral atoms, cations and anions.
To answer this question, we need to keep in mind that a neutral atom presents the same number of protons (positive particles) and electrons (negative particles). Another important information is that the protons are located in the nucleus of the atom, while the electrons are around the nucleus. Also, there is an electrostatic force between protons and electrons, which means that they the protons tend to attract the electrons to the nucleus.
While a neutral atom presents the same number of protons and electrons, a cation is an ion with positive charge, which means it has lost one or more electrons. In a cation, the balance between protons and electrons doesn't exist anymore: now, there is more positive than negative charge (more protons than electrons), and the overall attractive force that the protons have for the electrons is increased. As a result, the electrons stay closer to the nucleus and the radius of a cation is smaller than the neutral atom from which it was derived.
On the other side, anions present negative charge, which means they have received electrons. Similarly to cations, the balance between protons and electrons doesn't exist anymore, but in this case, there are more electrons than protons. In an anion, the overall attractive force that the protons have for the electrons is decreased. As a result, the electrons are "more free" to move and, as they are not so attracted to the nucleus, they tend to stay farther from the positive nucleus compared to the neutral atom - because of this, the radius of an anion is larger than the neutral atom from which it was derived.
Isotopes of any given factor all incorporate the equal variety of protons, so they have the identical atomic wide variety (for example, the atomic wide variety of helium is usually 2). Isotopes of a given factor include exceptional numbers of neutrons, therefore, special isotopes have special mass numbers.