1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shutvik [7]
3 years ago
12

Tengo 5 cubos de colores. Uno rojo, uno amarillo, uno verde, uno azul claro y uno azul oscuro. ¿De cuántas formas puedo organiza

r los 5 cubos en una columna en la que los dos cubos azules no se toquen entre sí?
Mathematics
1 answer:
rusak2 [61]3 years ago
7 0

Answer:

72 formas

Step-by-step explanation:

Primero vamos a calcular de cuántas formas se puede organizar los 5 cubos en una columna utilizando la regla de la multiplicación:

5 * 4 * 3 * 2 * 1 = 120

Porque tenemos 5 cubos para poner en la base de la columna, luego 4 cubos para la segunda posición de la columna, luego 3 cubos y así hasta organizar todos los cubos.

Luego vamos a calcular de cuántas formas podemos organizar los 5 cubos de tal forma que los cubos azules se toquen entre sí. Para esto vamos a contar los dos cubos azules como si fueran uno solo, es decir, sólo tendríamos "4 cubos" y podríamos organizar los cubos de 24 formas distintas:

4 * 3 * 2 * 1 = 24

Por otro lado, los 2 cubos azules pueden ser organizados de dos formas diferentes: primero el claro y luego el oscuro o primero el oscuro y luego el claro.

Es decir que hay 24 formas distintas de organizar los cubos en donde primero va el claro y luego el oscuro y hay 24 formas de organizar los cubos en donde primero va el oscuro y luego el claro.

Esto significa que de las 120 formas de organizar los 5 cubos, 48 formas tienen los cubos azules juntos y en 72 (120-48) formas los dos cubos azules no se tocan entre sí.

You might be interested in
MDEG
Margaret [11]
The answer would be 84
5 0
3 years ago
Help me please<br><br> please show WORK and just don’t put answer to get brainlest
Tamiku [17]

Answer:

11.25

Step-by-step explanation:

4.5 / 2 = 2.25 cups/ cup rice

2.25 x 2 cups of rice = 4.5 cups of water.

5 x 2.25 = 11.25

4 0
3 years ago
10.00cm by 2.35 cm by 1.10 cm
murzikaleks [220]

Answer:

I think you would divide all of your numbers.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
For integers a, b, and c, consider the linear Diophantine equation ax C by D c: Suppose integers x0 and y0 satisfy the equation;
Dmitrij [34]

Answer:

a.

x = x_1+r(\frac{b}{gcd(a, b)} )\\y=y_1-r(\frac{a}{gcd(a, b)} )

b. x = -8 and y = 4

Step-by-step explanation:

This question is incomplete. I will type the complete question below before giving my solution.

For integers a, b, c, consider the linear Diophantine equation

ax+by=c

Suppose integers x0 and yo satisfy the equation; that is,

ax_0+by_0 = c

what other values

x = x_0+h and y=y_0+k

also satisfy ax + by = c? Formulate a conjecture that answers this question.

Devise some numerical examples to ground your exploration. For example, 6(-3) + 15*2 = 12.

Can you find other integers x and y such that 6x + 15y = 12?

How many other pairs of integers x and y can you find ?

Can you find infinitely many other solutions?

From the Extended Euclidean Algorithm, given any integers a and b, integers s and t can be found such that

as+bt=gcd(a,b)

the numbers s and t are not unique, but you only need one pair. Once s and t are found, since we are assuming that gcd(a,b) divides c, there exists an integer k such that gcd(a,b)k = c.

Multiplying as + bt = gcd(a,b) through by k you get

a(sk) + b(tk) = gcd(a,b)k = c

So this gives one solution, with x = sk and y = tk.

Now assuming that ax1 + by1 = c is a solution, and ax + by = c is some other solution. Taking the difference between the two, we get

a(x_1-x) + b(y_1-y)=0

Therefore,

a(x_1-x) = b(y-y_1)

This means that a divides b(y−y1), and therefore a/gcd(a,b) divides y−y1. Hence,

y = y_1+r(\frac{a}{gcd(a, b)})  for some integer r. Substituting into the equation

a(x_1-x)=rb(\frac{a}{gcd(a, b)} )\\gcd(a, b)*a(x_1-x)=rba

or

x = x_1-r(\frac{b}{gcd(a, b)} )

Thus if ax1 + by1 = c is any solution, then all solutions are of the form

x = x_1+r(\frac{b}{gcd(a, b)} )\\y=y_1-r(\frac{a}{gcd(a, b)} )

In order to find all integer solutions to 6x + 15y = 12

we first use the Euclidean algorithm to find gcd(15,6); the parenthetical equation is how we will use this equality after we complete the computation.

15 = 6*2+3\\6=3*2+0

Therefore gcd(6,15) = 3. Since 3|12, the equation has integral solutions.

We then find a way of representing 3 as a linear combination of 6 and 15, using the Euclidean algorithm computation and the equalities, we have,

3 = 15-6*2

Because 4 multiplies 3 to give 12, we multiply by 4

12 = 15*4-6*8

So one solution is

x=-8 & y = 4

All other solutions will have the form

x=-8+\frac{15r}{3} = -8+5r\\y=4-\frac{6r}{3} =4-2r

where r ∈ Ζ

Hence by putting r values, we get many (x, y)

3 0
3 years ago
I need help or the answer
m_a_m_a [10]
The answer to your problem would be answer
3 0
3 years ago
Other questions:
  • Convert. If necessary, round to the nearest tenth. (Recall: 1.06 qt. ≈ 1 L) 15 L qt. a. 15.9 c. 13.4 b. 159 d. 134
    7·1 answer
  • What graph represents the equation y=1.4x+2
    13·1 answer
  • Present Value of Money Flow Each function in Exercise represents the rate of flow of money (in dollars per year) over the given
    13·1 answer
  • who will give my answer I will mark as a brand list and follow in your back please give all the answer of the question desert 2
    12·1 answer
  • The graph of a line passes through the points (0,5) and (-10,0). What is the equation
    8·1 answer
  • Adam works at a bakery. He uses 1/8 of his flour supply to make bread and 3/4 of his flour supply to make other baked goods. If
    7·1 answer
  • Scott’s piggy bank contains $5.87 worth of pennies and quarters. If the number of pennies is fifteen more than the number of qua
    15·1 answer
  • What is the simplified form of the ratio 27 : 9
    11·2 answers
  • Pls help ill give brainly ​
    14·1 answer
  • Ms. Sunshine had $10.00. She purchased milk for $2.35 and apples for $1.95. How much money does she have left?​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!