The phase change occurs during evaporation. On a hot day, wet clothing is drying. A liquid becomes a gas when it evaporations.
During the process of evaporation, a liquid transforms into a gaseous phase that is not saturated with the evaporating substance. The term "vaporization of a liquid" refers to this process. Clothes start to dry as water vapor escapes from the fabric's surface.
<h3>
What is evaporation?</h3>
A liquid turns into a gas through the process of evaporation. Raindrops that "vanish" on a hot day or damp clothing that dries in the sun are good examples of the phenomena. In these instances, the liquid water is evaporating into a gas known as water vapor rather than really dissipating. Global evaporation takes place.
Learn more about evaporation: brainly.com/question/5019199
#SPJ4
Answer:
Yes, Mass is conserved.
Explanation:
Every chemical reactions obey the law of conservation of mass. The law of conservation of mass states that in chemical reactions, mass is always constant.
Equation:
2Na + Cl₂ → 2NaCl
From the equation above, one can observe that the reaction started using 2 atoms of Na and it produced 2 atoms of the same element in NaCl. A molecule of Cl produced 2 atoms of Cl in the NaCl
Design a simple experiment to support your answer:
Aim: To demonstrate the law of conservation of mass
One Na atom weighs 23g
Two Na atom will weigh 2 x 23 = 46g
1 atom of Cl is 35.5g
1 molecule of Cl containing two atoms of Cl will weigh 2 x 35.5 = 71g
Total mass of reactants = mass of 2Na + 1Cl₂ = (46 + 71)g = 117g
On the product side, Mass of 1 NaCl = 23+ 35.5 = 58.5g
Two moles of NaCl will give 2 x 58.5g = 117g
Since the mass on both side is the same, one can say mass is conserved.
Data:
<span>Solute: 28.5 g of glycerin (C3H8O3)
Solvent: 135 g of water at 343 k.
Vapor pressure of water at 343 k: 233.7 torr.
Quesiton: Vapor pressure of water
Solution:
Raoult's Law: </span><span><span>The vapour
pressure of a solution of a non-volatile solute is equal to the vapour
pressure of the pure solvent at that temperature multiplied by its mole
fraction.
Formula: p = Xsolvent * P pure solvent
X solvent = moles solvent / moles of solution
molar mass of H2O = 2*1.0g/mol + 16.0 g/mol = 18.0 g/mol
moles of solvent = 135 g of water / 18.0 g/mol = 7.50 mol
molar mass of C3H8O3 = 3*12.0 g/mol + 8*1 g/mol + 3*16g/mol = 92 g/mol
moles of solute = 28.5 g / 92.0 g/mol = 0.310 mol
moles of solution = moles of solute + moles of solvent = 7.50mol + 0.310mol = 7.810 mol
Xsolvent = 7.50mol / 7.81mol = 0.960
p = 233.7 torr * 0.960 = 224.4 torr
Answer: 224.4 torr
</span> </span>
Answer:
1125mL
Explanation:
this can be done using general gas law
Answer:
Noble gases
Explanation:
The noble gases are non-metals that requires the highest amount of energy to remove an electron from their shells.
The reason for this difficult is that their electronic configuration confers a stable configuration them.
- The ionization energy is the energy required to remove the most loosely held electrons in an atom.
- Due to the special stability of noble gases, it is very difficult to remove electrons from an atom of noble gases.