The heat capacity of a defined system is the amount of heat (usually expressed in calories, kilocalories, or joules) needed to raise the system's temperature by one degree (usually expressed in Celsius or Kelvin). It is expressed in units of thermal energy per degree temperature. To aid in the analysis of systems having certain specific dimensions, molar heat capacity and specific heat capacity can be used. To measure the heat capacity of a reaction, a calorimeter must be used. Bomb calorimeters are used for constant volume heat capacities, although a coffee-cup calorimeter is sufficient for a constant pressure heat capacity.
1 mole --------------- 6.02 x 10²³ atoms
( moles iron) -------- 5.0 x 10²⁵ atoms
( moles iron ) = 5.0 x 10²⁵ x 1 / 6.02 x 10²³
moles iron = 5.0 x 10²⁵ / 6.02 x 10²³
= 83.05 moles of iron
hope this helps!
Answer:
- <em>You could expect 3.48 grams of C₂H₄N₂</em>
Explanation:
You must start by stating the chemical equation for the reaction of ammonia, carbon dioxide, and methane to produce aminoaceto nitrile.
1. Word equation:
Ammonia + Carbon dioxide + Methane → Aminoacetonitrile + Water
2. Balanced chemical equation:

3. Convert the mass of each reactant into number of moles:
<u>Formula:</u>
- Number of moles = mass in grams/molar mass
<u>2.11g NH₃</u>
- Number of moles = 2.11g / 17.03g/mol = 0.124 mol NH₃
<u>14.9g CO₂</u>
- Number of moles = 14.9g/44.01g/mol = 0.339 mol CO₂
<u>1.75g CH₄</u>
- Number of moles = 1.75g/16.04g/mol = 0.109 mol CH₄
4. Theoretical mol ratio
From the balanced chemical equation, using the coefficientes:

5. Limiting reagent
The available amounts of the reactants are:
Fom the theoretical mole ration, to react with 0.124 mol of NH₃ you would need:
- 0.124molNH₃ × (5molCO₂/8molNH₃) = 0.0775 mol CO₂
Since there are 0.339 moles available, this is in excess.
- 0.124molNH₃ × (3molCH₄/8molNH₃) = 0.0465mol CO₂
Since there are 0.109 moles available, this is in excess too.
Hence, the limiting reagent is NH₃.
6. Yield
Use the theoretical ratio:
- 0.124molNH₃ × (4molC₂H₄N₂ / 8molNH₃) = 0.0620 mol C₂H₄N₂
Convert to grams:
- Mass = number of moles × molar mass
- 0..0620 mol × 56.068g/mol = 3.48 g of C₂H₄N₂ ← answer
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
Everything is made of atoms. An atom is the smallest particle of an element, like oxygen or hydrogen. Atoms join together to form molecules. A water molecule has three atoms: two hydrogen (H) atoms and one oxygen (O) atom.