1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
4 years ago
8

Which of the following is equal to

" \frac{1}{5^2} " alt=" \frac{1}{5^2} " align="absmiddle" class="latex-formula">
Mathematics
1 answer:
Elza [17]4 years ago
8 0

Immediately omit the negative possible answer. Since 5^2 = 25, 1/5^2 = 1/25.

You might be interested in
t is commonly assumed that babies are equally likely to come as either a boy or a girl. This is not true. Actually, about 51.3%
eduard

Answer:

The probability they have one boy and one girl = 0.50 = 50 %

Step-by-step explanation:

Here the family has two children, we need to find what is the probability they have one boy and one girl.

Probability for babies are boys = 51.3% = 0.513

Probability for babies are girls = 1 - 0.513 = 0.487

The probability they have one boy and one girl = 1 -  probability that they have two boys - probability that they have two girls

The probability they have one boy and one girl = 1 - 0.513² - 0.487² = 0.499 = 0.50

The probability they have one boy and one girl = 0.50 = 50%

7 0
3 years ago
A street that is 360 feet long is covered in snow city workers are using a snow plow to clear the street a tire on the snow plow
belka [17]

Answer:

Radius of tire=0.58 meter

Step-by-step explanation:

as we know that the

Circumference of the tire=2*3.14*r

and it needs to rotate 30 times to cover the street distance of 360 feet

So, the below equation would be used to find the radius of tire in the meters

360/3.28084=30*2*3.14*r

r=0.5824203822 meters

Hence

Radius=0.58 meter

3 0
3 years ago
Se tiene un lote baldío de forma triangular bardeado. La barda de enfrente tiene una medida de 4 m,las otras dos bardas no es po
dybincka [34]

Answer:

a) La medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m. b) El triángulo en cuestión <em>no es un triángulo rectángulo</em>, es decir, ninguno de sus ángulos internos es <em>recto </em>(90 grados sexagesimales). En estos casos, no se puede aplicar el Teorema de Pitágoras o la simple utilización de las razones trigonométricas; se aplican, en cambio, leyes para la resolución de triángulos oblicuángulos (o triángulos no rectángulos).

Step-by-step explanation:

Este problema no se puede resolver "aplicando sólo las razones trigonométricas o el teorema de Pitágoras" porque es sólo aplicable a <em>triángulos rectos</em>, es decir, uno de los ángulos del triángulo es recto o igual a <em>90</em> grados sexagesimales. Los dos restantes triángulos suman 90 grados sexagesimales, o se dice, son <em>complementarios</em>.

La resolución de triángulos que no son rectos (conocida en algunos textos como solución de problemas de triángulos oblicuángulos) pueden resolverse usando, la <em>ley de los senos (o teorema del seno)</em>, <em>ley de los cosenos</em> y <em>la ley de las tangentes</em>. El caso propuesto en la pregunta se ajusta a la <em>ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}

Es decir, la razón entre el lado de un triángulo y el seno del ángulo que tiene frente a él es igual para todos los lados y ángulos del triángulo.

El triángulo de la pregunta no tiene un ángulo recto

La suma de los ángulos internos de un triángulo es de 180 grados sexagesimales:

\\ \alpha + \beta + \gamma = 180^{\circ}

En la pregunta tenemos que la suma de los dos ángulos propuestos es:

\\ 34^{\circ} + 64^{\circ} + \gamma = 180^{\circ}

\\ 98^{\circ} + \gamma = 180^{\circ}

Restando 98 grados sexagesimales a cada lado de la igualdad:

\\ 98^{\circ} - 98^{\circ} + \gamma = 180^{\circ} - 98^{\circ}

\\ 0 + \gamma = 180^{\circ} - 98^{\circ}

\\ \gamma = 82^{\circ}

Con lo que se deduce que no hay ningún ángulo recto en el triángulo propuesto y no se podría usar el Teorema de Pitágoras o simples razones trigonométricas para resolverlo.

Resolución del lado del triángulo

De la pregunta tenemos:

  • La barda de enfrente tiene una medida de 4m. El ángulo que está enfrente de esta barda (barda frontal) es de 34°.
  • No se sabe el valor del lado que está enfrente del ángulo de 64°, pero se puede calcular usando la Ley de los senos.

Digamos que:

\\ a = 4m, \alpha = 34^{\circ}

\\ b = x, \beta = 64^{\circ}

Entonces, aplicando la <em>Ley de los senos</em>:

\\ \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)}

Multiplicando a cada lado de la igualdad por \\ \sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = \frac{b}{\sin(\beta)}*\sin(\beta)

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*\frac{\sin(\beta)}{\sin(\beta)}

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b*1

\\ \frac{a}{\sin(\alpha)}*\sin(\beta) = b

Sustituyendo cada valor en la expresión anterior:

\\ b = \frac{a}{\sin(\alpha)}*\sin(\beta)

\\ b = \frac{4m}{\sin(34^{\circ})}*\sin(64^{\circ})

\\ b = 4m*\frac{0.8988}{0.5592}

\\ b = 6.4292m

En palabras, la medida de la barda que está enfrente del ángulo 64° es de, aproximadamente, 6.4292m.

El lado <em>c</em> puede obtenerse de manera similar considerando que \\ \gamma = 82^{\circ}.

6 0
3 years ago
The glass window pane has an area of 80 square centimeters. The width of the pane is 8 centimeters.
Brums [2.3K]

Answer:

The length is 10 cm

Step-by-step explanation:

The area is given by length times width

A = l*w

We have an area of 80 cm^2 and a width of 8

80 = l*8

Divide each side by 8

80/8 = 8l/8

10 = l

The length is 10 cm

6 0
4 years ago
Read 2 more answers
A rubber ball is thrown against the pavement and bounces into the air. If the ball is airborne for 2.5 seconds, how long after i
miv72 [106K]

Answer:

Step-by-step explanation:

1/2 * 2.5

= 1.25 seconds

3 0
3 years ago
Other questions:
  • Congratulations! You just won a fantastic trip to Cozumel!! Unfortunately you cannot take your dogs with you. None of your famil
    14·1 answer
  • There are 96 candles in a large box how many candles are in a small box . 2 ounce a box and 6 ounce a box
    5·1 answer
  • If the sum of five consecutive even integers is 90, what is the smallest of the five integers?
    15·1 answer
  • At a college, 7 out of 10 students work either a full-time or a part-time job in addition to their studies. If 4900 students wer
    5·1 answer
  • PLS HELP
    15·1 answer
  • Need help with algebra question ‼️
    11·1 answer
  • Find the area of this trapezoid. Be sure to include the correct unit in your answer.
    6·1 answer
  • What is 76 plus one equals
    12·2 answers
  • consider the line y=9x-2. find the equation of the line that is perpendicular to this line and passes through the point (2,-6).
    10·1 answer
  • Write an inequality for the situation The value, v, of the necklace is greater than $83
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!