Answer:
(a)10.5 rad/s2
(b) 20.9 rev
(c) 47.27 m
Explanation:
As the block of mass 53 kg is falling and pulling on the rope. The tension force on the rope must be equal to the gravity acting on the block according to Newton's 3rd law
T = mg = 53*9.81 = 519.93 N
Since this tension force would rotate the cylinder freely without any friction. The torque created by this tension force is
To = TR = 519.93 * 0.36 = 187.17 Nm
This solid cylinder would have a moment of inertia around it's rotating axis of:

(a)We can use Newton's 2nd law to calculate the angular acceleration exerted by such torque on the solid cylinder

(b) With such constant angular acceleration, the angle it would make after 5s is

Since each revolution equals to
of angle, we can calculate the number of revolution it makes

(c) Assume the thickness of the rope is negligible (and its wounded radius is unchanging), we can calculate the rope length unwinded after rotating 131.3rad

Complete Question
An infinite sheet carries a uniform, positive charge per unit area. The electric field produced by the sheet is represented by parallel lines drawn with a density N lines per m2 that are perpendicular to and away from the sheet. The charge per unit area on the sheet is doubled. How should the density of the electric field lines be changed?
A It should stay the same
B It should be quadrupled.
C It should be quintupled
D It should be doubled.
E It should be tripled
Answer:
Option D is the correct option
Explanation:
Generally electric field is mathematically represented as

Where
is the charge per unit area (Charge density )
From the question we are told that
is doubled hence the
Looking the equation above we see that the value of the electric field will also double given that it is directly proportional to the charge density
Answer:
the speed of the cruiser relative to the pursuit ship is 0.3846c
Explanation:
the solution is in the attached Word file
Answer
given,
Capacitance of capacitor = 20.0-µF
Voltage = 150.0-V
inductance = 0.280 m H
a) the oscillation frequency of circuit


f = 2126.9 Hz
b) 
U = 0.225 J
c)Current in the inductor



instantaneous rate of change of current is equal to 535714 A/s