Explanation:
Below is an attachment containing the solution.
<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
Gravity is a force which tries to pull two objects toward each other. Anything which has mass also has a gravitational pull. The more massive an object is, the stronger its gravitational pull is. Earth's gravity is what keeps you on the ground and what causes objects to fall.
Answer:
A. (CH3)3C-I reacts by SN1 mechanism whose rate is independent of nucleophile reactivity.
Explanation:
We must recall that (CH3)3C-I is a tertiary alkyl halide. Tertiary alkyl halides preferentially undergo substitution reaction via SN1 mechanism.
In SN1 mechanism, the rate of reaction depends solely on the concentration of the alkyl halide (unimolecular mechanism) and is independent of the concentration of the nucleophile. As a result of this, both Br^- and Cl^- react at the same rate.