Hello,
The answer is option C <span>homogeneous mixture.
Reason:
The answer is option C because you can find </span><span>homogeneous mixtures anywhere for example: Vinegar. Its not option A because suspension is usually in elements but as not a mixture. Its not option B because a colloid is a measurement tool that allows to make compounds (mixtures).Its also not option D because those type o mixtures are hard to find in extreme weather conditions.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit </span>
The electron configuration of V³⁺ is [Ar]
. The ion is paramagnetic because it has two unpaired electrons
<h3>
What is paramagnetic?</h3>
- A weak magnetic field supplied externally can weakly attract some materials, which then create internal magnetic fields that are directed in the same direction as the applied magnetic field. This phenomenon is known as paramagnetic.
- Diamagnetic materials, in contrast, are attracted to magnetic fields and produce induced magnetic fields that are directed in the opposite direction from the applied magnetic field.
- The majority of chemical elements and some compounds are considered to be paramagnetic materials.
- Paramagnetic materials have a relative magnetic permeability that is somewhat more than 1, which makes them attracted to magnetic fields.
- The applied field induces a linearly decreasing magnetic moment that is relatively weak.
- Modern experiments on paramagnetic materials are frequently done with a sensitive analytical balance since it typically requires a sensitive analytical balance to identify the effect.
To learn more about paramagnetic with the given link
brainly.com/question/18865305
#SPJ4
Conduction: In the conduction, the heat is transferred from the hotter body to the colder body until the temperature on both bodies are equal.
In thermal equilibrium, there is no heat transfer as the heat is transferred till the temperature on the bodies are not same.
In the given problem, an iron bar at 200°C is placed in thermal contact with an identical iron bar at 120°C in an isolated system. After 30 minutes, the thermal equilibrium is attained. Then, the temperature on both iron bars are equal.Both iron bars are at 160°C in an isolated system.
But in an open system, the temperatures of the iron bars after 30 minutes would be less than 160°C. There will be heat lost to the surrounding. The room temperature is 25°C. There will be exchange of the heat occur between the iron bars and the surrounding. But It would take more than 30 minutes for both iron bars to reach 160°C because heat would be transferred less efficiently.