Answer:
It has to have a problem base and a realistic explanation.
Explanation:
It needs to have enough information for you to be able to come up with an answer and realistic explanation.
Hope I helped :)
<h2>
Answer:</h2>
Valance electrons can be determined by <u>Group</u> on the periodic table
<h2>
Explanation:</h2>
- Valence electrons are the electrons present in the outermost shell of an atom. We can determine the total number of valence electrons present in an atom by checking at its Group in which it is placed in the periodic table. For example, atoms in Groups 1 the number of valence electron is one and for group 2 the number of valence electrons is 2.
- The groups have number of valance electrons as follow:
Group 1 - 1 valence electron.
Group 2 - 2 valance electrons.
Group 13 - 3 valence electrons.
Group 14 - 4 valance electrons.
Group 15 - 5 valence electrons.
Group 16 - 6 valence electrons.
Group 17 - 7 valence electrons.
Group 18 - 8 valence electrons.
Result: No of valence electron can be determined by the group no. of the element.
The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults
Answer:
I remember doing this in 7th,
1. D
2. B or D, more leaning on B though
3. A
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped :D