Answer:
A.) ![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Explanation:
The general Kb expression is:
![K_b = \frac{[HA][OH^-]}{[A^-]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BHA%5D%5BOH%5E-%5D%7D%7B%5BA%5E-%5D%7D)
In this equation
-----> Kb = equilibrium constant
-----> [HA] = acid
-----> [A⁻] = base
Since liquids are not included in equilibrium expressions, H₂O should not be present. The products are in the numerator while the reactant are in the denominator. In this reaction, CH₃NH₂ is acting as a base and CH₃NH₃⁺ is acting as an acid.
As such, the expression is:
![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Answer:
I think the answers are... b, d, and maybe a. I don't know for sure. So only put these answers in if you trust me!
Explanation:
I had this very question, and I put in what I think were the answers.
B is correct. Molecules move faster when they are hotter because they have more energy. You can notice this change with your naked eye. Molecules in solids don't move. They have barely any energy. Hope this helps! ;)