The amount of heat required is B) 150 J
Explanation:
The amount of heat energy required to increase the temperature of a substance is given by the equation:

where:
m is the mass of the substance
C is the specific heat capacity of the substance
is the change in temperature of the substance
For the sample of copper in this problem, we have:
m = 25 g (mass)
C = 0.39 J/gºC (specific heat capacity of copper)
(change in temperature)
Substituting, we find:

So, the closest answer is B) 150 J.
Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
M V R = constant angular momentum is constant because no forces act in the direction of V
Since M (mass) = constant
V R = constant
The force is directed along the gravitational force vector (towards the center of rotation)
Answer:
Explanation:
On the Moon :----
1500 x 1.6 = 2400 m /s is initial velocity of bullet .
g = 1.6 m /s²
v = u - gt
0 = 2400 - 1.6 t
t = 1500 s
This is time of ascent
Time of decent will also be the same
Total time of flight = 2 x 1500 = 3000 s
On the Earth : ---
v = u - a₁ t
0 = u - a₁ x 18
u = 18a₁
v² = u² - 2 x a₁ x 2743.2
0 = (18a₁ )² - 2 x a₁ x 2743.2
a₁ = 16.93
For downward return
s = ut + 1/2 a₂ x t²
2743.2 = 0 + .5 x a₂ x 31²
a₂ = 5.7 m /s²
If d be the deceleration produced by air
g + d = 16.93 ( during upward journey )
g - d = 5.7
g = (16.93 + 5.7) / 2
= 11.315 m / s
d = 5.6 m /s²
So air is creating a deceleration of 5.6 m /s².
I have the exact same question, any chance you figured it out since you posted this?
Answer:
Explanation:
A )
At the bottom of the circle , the potential energy of the stopper is converted into kinetic energy
1/2 m V² = mg x 2r + 1/2 mv²
m is mass of stopper , V is velocity at the bottom , r is radius of the circular path which is length of the string , v is velocity at the top
1/2 V² = g x 2r + 1/2 v²
V² = g x 4r + v²
V² = 9.8 x 4 + 8²
V² = 103.2
V = 10.16 m/s
B )
If T be the tension at the top
Net downward force
= mg + T . This force provides centripetal force for the circular motion
mg +T = mv² / r
T = mv²/r -mg
= m ( v²/r - g )
= .005 ( 8²/1 -g )
= .005 x 54.2
= .27 N .
C ) At the bottom
Net force = T - mg , T is tension at the bottom , V is velocity at bottom
T-mg = mV²/r
T = m ( V²/r +g )
= .005 ( 10.16²/1 +9.8)
= .005 x 113
= .56 N .