I would say it is 4(6+11) that or 72 is the answer
B because pie radius square = area of a circle
Split up the interval [2, 5] into

equally spaced subintervals, then consider the value of

at the right endpoint of each subinterval.
The length of the interval is

, so the length of each subinterval would be

. This means the first rectangle's height would be taken to be

when

, so that the height is

, and its base would have length

. So the area under

over the first subinterval is

.
Continuing in this fashion, the area under

over the

th subinterval is approximated by

, and so the Riemann approximation to the definite integral is

and its value is given exactly by taking

. So the answer is D (and the value of the integral is exactly 39).
Answer:
Step-by-step explanation:
Step 1: Equation at the end of step 1
Simplifying
60(x + 20) = 3x
Reorder the terms:
60(20 + x) = 3x
(20 * 60 + x * 60) = 3x
(1200 + 60x) = 3x
Solving
1200 + 60x = 3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-3x' to each side of the equation.
1200 + 60x + -3x = 3x + -3x
Combine like terms: 60x + -3x = 57x
1200 + 57x = 3x + -3x
Combine like terms: 3x + -3x = 0
1200 + 57x = 0
Add '-1200' to each side of the equation.
1200 + -1200 + 57x = 0 + -1200
Combine like terms: 1200 + -1200 = 0
0 + 57x = 0 + -1200
57x = 0 + -1200
Combine like terms: 0 + -1200 = -1200
57x = -1200
Divide each side by '57'.
x = -21.05263158
Simplifying
x = -21.05263158
It shows -3, -2 in the graph in standard form i believe it’s y= -5