1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
14

The amount of water four runners drank are shown at the right. Who drank the most?

Mathematics
1 answer:
borishaifa [10]3 years ago
4 0
Sirjo drank the most
You might be interested in
Hows everyone's day? free 25 points btw ;D
LenKa [72]

my day is pretty okay how is your day

6 0
3 years ago
Read 2 more answers
Display how you could never a measurement given into ounces into pints
disa [49]
There is allways 4 ounces in 1 pint.
3 0
3 years ago
Read 2 more answers
NEED HELP ASAP PLEASE HELP
marusya05 [52]
It's C.......................
3 0
3 years ago
Read 2 more answers
a group of 266 people is called to jury duty in court. Each jury includes 12 jurors plus to alternates. How many complete juries
nekit [7.7K]
There are 14 positions. There are 266 choices for the first juror, 265 for the second, 264 for the third, etc. 266*265*264*...*252=<span>5.93893009829e+33, or about 6,000,000,000,000,000,000,000,000,000,000,000 complete juries. Hope this helps!</span>
7 0
3 years ago
Using polar coordinates, evaluate the integral which gives the area which lies in the first quadrant below the line y=5 and betw
vfiekz [6]

First, complete the square in the equation for the second circle to determine its center and radius:

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0

<em>x</em> ² - 10<em>x</em> + 25 + <em>y </em>² = 25

(<em>x</em> - 5)² + <em>y</em> ² = 5²

So the second circle is centered at (5, 0) with radius 5, while the first circle is centered at the origin with radius √100 = 10.

Now convert each equation into polar coordinates, using

<em>x</em> = <em>r</em> cos(<em>θ</em>)

<em>y</em> = <em>r</em> sin(<em>θ</em>)

Then

<em>x</em> ² + <em>y</em> ² = 100   →   <em>r </em>² = 100   →   <em>r</em> = 10

<em>x</em> ² - 10<em>x</em> + <em>y</em> ² = 0   →   <em>r </em>² - 10 <em>r</em> cos(<em>θ</em>) = 0   →   <em>r</em> = 10 cos(<em>θ</em>)

<em>y</em> = 5   →   <em>r</em> sin(<em>θ</em>) = 5   →   <em>r</em> = 5 csc(<em>θ</em>)

See the attached graphic for a plot of the circles and line as well as the bounded region between them. The second circle is tangent to the larger one at the point (10, 0), and is also tangent to <em>y</em> = 5 at the point (0, 5).

Split up the region at 3 angles <em>θ</em>₁, <em>θ</em>₂, and <em>θ</em>₃, which denote the angles <em>θ</em> at which the curves intersect. They are

<em>θ</em>₁ = 0 … … … by solving 10 = 10 cos(<em>θ</em>)

<em>θ</em>₂ = <em>π</em>/6 … … by solving 10 = 5 csc(<em>θ</em>)

<em>θ</em>₃ = 5<em>π</em>/6  … the second solution to 10 = 5 csc(<em>θ</em>)

Then the area of the region is given by a sum of integrals:

\displaystyle \frac12\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}\left(10^2-(10\cos(\theta))^2\right)\,\mathrm d\theta+\int_{\frac\pi6}^{\frac{5\pi}6}\left((5\csc(\theta))^2-(10\cos(\theta))^2\right)\,\mathrm d\theta\right)

=\displaystyle 50\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\} \sin^2(\theta)\,\mathrm d\theta+\frac12\int_{\frac\pi6}^{\frac{5\pi}6}\left(25\csc^2(\theta) - 100\cos^2(\theta)\right)\,\mathrm d\theta

To compute the integrals, use the following identities:

sin²(<em>θ</em>) = (1 - cos(2<em>θ</em>)) / 2

cos²(<em>θ</em>) = (1 + cos(2<em>θ</em>)) / 2

and recall that

d(cot(<em>θ</em>))/d<em>θ</em> = -csc²(<em>θ</em>)

You should end up with an area of

=\displaystyle25\left(\left\{\int_0^{\frac\pi6}+\int_{\frac{5\pi}6}^{2\pi}\right\}(1-\cos(2\theta))\,\mathrm d\theta-\int_{\frac\pi6}^{\frac{5\pi}6}(1+\cos(2\theta))\,\mathrm d\theta\right)+\frac{25}2\int_{\frac\pi6}^{\frac{5\pi}6}\csc^2(\theta)\,\mathrm d\theta

=\boxed{25\sqrt3+\dfrac{125\pi}3}

We can verify this geometrically:

• the area of the larger circle is 100<em>π</em>

• the area of the smaller circle is 25<em>π</em>

• the area of the circular segment, i.e. the part of the larger circle that is bounded below by the line <em>y</em> = 5, has area 100<em>π</em>/3 - 25√3

Hence the area of the region of interest is

100<em>π</em> - 25<em>π</em> - (100<em>π</em>/3 - 25√3) = 125<em>π</em>/3 + 25√3

as expected.

3 0
2 years ago
Other questions:
  • Express the following relationship as a rate.
    7·1 answer
  • What is the unit rate of 1,500 divided by 5
    11·1 answer
  • Find the value of 3.4(4 + 7) + 2³ - 2.67
    10·2 answers
  • How to graph quadratic equations
    12·1 answer
  • What value of a makes the statement below true?
    7·2 answers
  • What is P versus NP, its supposed to be one of the hardest questions in the world
    8·1 answer
  • Ronnie bought 6 ice cream cones for himself and his friends. Seventeen cents tax was added to the price of each cone. The total
    8·1 answer
  • What is the volume? *<br> 10 yd<br> 12 yd<br> 4 yd
    13·2 answers
  • Please help me, i'll give you brainlyist <br> 20 points (maths)
    12·1 answer
  • Please answer asap !!!!!!!!!!!]
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!