Based on the calculations that 300 is 40%, 375 is considered 50% or halfway.. in this case, we must multiply 375 by 2 and we will discover how many students were surveyed:
375 x 2 = 750
(a) ![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
Answer:
![[\frac{9}{2.6} - \frac{2.5^{2} }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%5E%7B2%7D%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5*2.5 }{2.5} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%2A2.5%20%7D%7B2.5%7D%20%5D%5E%7B2%7D)
= ![[\frac{9}{2.6} - \frac{2.5}{1} ]^{2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B9%7D%7B2.6%7D%20%20-%20%5Cfrac%7B2.5%7D%7B1%7D%20%5D%5E%7B2%7D)
*canceling 2.5 in numerator and denominator*
![= [\frac{9-(2.5)(2.6)}{2.6} ]^2\\*Using L.C.M of 2.6 and 1 which comes out to be '2.6'= [\frac{9-(6.5)}{2.6} ]^2\\= [\frac{2.5}{2.6} ]^2\\*multiplying and dividing by '10'= [\frac{2.5*10}{2.6*10} ]^2\\= [\frac{25}{26} ]^2\\= \frac{25^2}{26^2}\\= \frac{625}{676}\\= 0.925](https://tex.z-dn.net/?f=%3D%20%5B%5Cfrac%7B9-%282.5%29%282.6%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2AUsing%20L.C.M%20of%202.6%20and%201%20which%20comes%20out%20to%20be%20%272.6%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B9-%286.5%29%7D%7B2.6%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B2.5%7D%7B2.6%7D%20%5D%5E2%5C%5C%3C%2Fp%3E%3Cp%3E%2Amultiplying%20and%20dividing%20by%20%2710%27%3C%2Fp%3E%3Cp%3E%3D%20%5B%5Cfrac%7B2.5%2A10%7D%7B2.6%2A10%7D%20%5D%5E2%5C%5C%3D%20%5B%5Cfrac%7B25%7D%7B26%7D%20%5D%5E2%5C%5C%3D%20%5Cfrac%7B25%5E2%7D%7B26%5E2%7D%5C%5C%3D%20%5Cfrac%7B625%7D%7B676%7D%5C%5C%3D%200.925)
Properties used:
Cancellation property of fractions
Least Common Multiplier(LCM)
The least or smallest common multiple of any two or more given natural numbers are termed as LCM. For example, LCM of 10, 15, and 20 is 60.
(b) ![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3} ] ^{2}](https://tex.z-dn.net/?f=%20%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%20%20%20%20%5D%20%5E%7B2%7D%20)
Answer:
![[[\frac{3x^{a}y^{b}} {-3x^{a} y^{b} } ]^{3}] ^{2}\\](https://tex.z-dn.net/?f=%5B%5B%5Cfrac%7B3x%5E%7Ba%7Dy%5E%7Bb%7D%7D%20%7B-3x%5E%7Ba%7D%20y%5E%7Bb%7D%20%7D%20%5D%5E%7B3%7D%5D%20%5E%7B2%7D%5C%5C)
*using
*
*Again, using
*
![= \frac{3x^{2*3a}y^{2*3b}} {-3x^{2*3a} y^{2*3b} } \\= (-1)\frac{3x^{6a}y^{6b}} {3x^{6a} y^{6b} }\\[\tex]*taking -1 common, denominator and numerator are equal*[tex]= -(1)\frac{1}{1}\\= -1](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B3x%5E%7B2%2A3a%7Dy%5E%7B2%2A3b%7D%7D%20%7B-3x%5E%7B2%2A3a%7D%20y%5E%7B2%2A3b%7D%20%7D%20%20%5C%5C%3D%20%28-1%29%5Cfrac%7B3x%5E%7B6a%7Dy%5E%7B6b%7D%7D%20%7B3x%5E%7B6a%7D%20y%5E%7B6b%7D%20%7D%5C%5C%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%2Ataking%20-1%20common%2C%20denominator%20and%20numerator%20are%20equal%2A%3C%2Fp%3E%3Cp%3E%5Btex%5D%3D%20-%281%29%5Cfrac%7B1%7D%7B1%7D%5C%5C%3D%20-1)
Property used: 'Power of a power'
We can raise a power to a power
(x^2)4=(x⋅x)⋅(x⋅x)⋅(x⋅x)⋅(x⋅x)=x^8
This is called the power of a power property and says that to find a power of a power you just have to multiply the exponents.
Answer:
3/10
Step-by-step explanation:
(60y-18)=2(8-16)
60y-18=16-16
60y-18=0
60y=18 /:60
y= 18/60=3/10
Answer:
x = 1/8 = 0.125
Step-by-step explanation: Add 1 to both sides of the equation :
8x = 1
Divide both sides of the equation by 8:
x = 1/8 = 0.125
Answer:
21/40
Step-by-step explanation: