A mixture can be separated. Everything in a mixture keeps it's own properties and are not chemically joined together. I am not completely sure about the compound. Although with the cake example, the ingredients have been mixed and kind of "fused" together upon baking. Hope this helps a little. (P.S. trail mix is a good example of a mixture.)
<h3><u>Answer;</u></h3>
<em>All the above</em>
Workers at construction sites often reduce erosion by;
- <em>Moving excess sediment back to its original location
</em>
- <em>Planting trees
</em>
- <em>Spraying water on bare soil</em>
<h3><u>Explanation;</u></h3>
- Soil erosion is a naturally occurring process which involves the wearing away of the topsoil by natural forces such as wind, water or other forces associated with farming.
- <em><u>Construction of roads and buildings results to large amounts of soil erosion around the world. It is therefore important to put measures that would help reduce soil erosion at construction sites</u></em>. These measures uses principals of soil control such as implementing sediment control, limiting soil exposure, reducing the runoff velocity, and modifying topography among others.
<span>There are more than 550 active
volcanoes in the world, almost all of which are located at convergent
tectonic plate boundaries. This includes all of the volcanoes in the
Pacific Ring of Fire, such as Japan's Mount Fuji, as well as Mount Saint
Helens, Popocafepetl in Mexico and Azul in the Andes Range.</span>
An example of habitat destruction could be a squirrel who lives in a tree but modern civilication cutting down the squirrels tree and leaving it homeless
Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.