Answer:
rising pressure and decreasing temperature
Explanation:
Reversible reactions have a bit practical interest, but in some cases the technological benefit or profitability of production requires a shift in the equilibrium of a reversible reaction.
Increasing pressure
With increasing pressure on this system, the concentration of substances increases. In this case, the balance will shift towards smaller volumes. On the left side of the equation, two volumes of nitrogen react with one volume of hydrogen. On the right side of the equation there are two volumes of ammonia, i.e. the number of volumes on the right side of the equilibrium reaction is less than on the left and, therefore, with increasing pressure, the reaction equilibrium will shift to the right.
Decreasing temperature
When the temperature rises, the equilibrium shifts towards the endothermic reaction, and when the temperature decreases, towards the exothermic reaction and the reaction given above is the exothermic.
Answer:
1500kg/m^3
Explanation:
Formula:
d=m/v
Given:
m=1.5kg
v=1000cm^3
(The side length of a cube is always equal to the others)
Required:
d=?
Solution:
d=m/v
d=1.5kg/1000cm^3
d=1.5kg/0.001m^3
d=1500kg/m^3
Hope this helps ;) ❤❤❤
The one after metamorphic rock is melting.
Answer:
12.8 moles of potassium
Explanation:
449 g/39.10 g = 12.76 moles
First, you divide 449 g of potassium by its molar mass which is 39.10 g. Then you will get your answer, but you need to round it to 3 numbers because of Sig Figs, which makes it 12.8 moles.