A-1538=1074
a=1538+1074
a=2612
b+718=1074
b=1074-718
b=356
2000-c=1074
c=2000-1074
c=926
2612-356+926=3182
Yes, 23 has an inverse mod 1000 because gcd(23, 1000) = 1 (i.e. they are coprime).
Let <em>x</em> be the inverse. Then <em>x</em> is such that
23<em>x</em> ≡ 1 (mod 1000)
Use the Euclidean algorithm to solve for <em>x</em> :
1000 = 43×23 + 11
23 = 2×11 + 1
→ 1 ≡ 23 - 2×11 (mod 1000)
→ 1 ≡ 23 - 2×(1000 - 43×23) (mod 1000)
→ 1 ≡ 23 - 2×1000 + 86×23 (mod 1000)
→ 1 ≡ 87×23 - 2×1000 ≡ 87×23 (mod 1000)
→ 23⁻¹ ≡ 87 (mod 1000)
Answer:
This is an isosceles right triangle, then we have
2 x u^2 = [6sqrt(2)]^2
<=> 2 x u^2 = 72
<=> u^2 = 36
<=> u = 6
Hope this helps!
:)
Answer:
16 meters
Step-by-step explanation:
The height function is given by:

The value of x, in seconds, for which the derivate of the height function is zero, is the time at which the maximum height occurs:

For x = 3 seconds, the height is:

The maximum height that the ball will reach is 16 meters.
Since there are two events happening simultaneously (windy and no sun), we can apply the concept of conditional probability here.
P(A|B) = P(A∩B)/P(B)
where it means that given B is happening, the probability that A is happening as well is the ratio of the chance for A and B to happen simultaneously over the chance of B to happen.
For our case, this can be interpreted as
P(A|B): it is the probability that it is windy (A) GIVEN that there is no sun (B)
P(A∩B) : chance of wind and no sun
P(B) : chance that there is no sun tomorrow
The chance of P(A∩B) is already given as 20% or 0.20. Since there is 10% or 0.10 chance of sun, then chances of having no sun tomorrow is (1-0.10) = 0.90.
Thus, we have P(A|B) = 0.2/0.9 ≈ 0.22 or 22%.
So, answer is B: 22%<span>.</span>