Answer:
The muzzle velocity of this cork is 2 m/s.
Explanation:
It is given that,
Spring constant of the spring, k = 10 N/m
Mass of the cork, m = 6 g = 0.006 kg
Initial position of the spring, x = 5 cm = 0.05 m
Final position of the spring, x' = 1 cm = 0.01 m
According to the law of conservation of energy, the initial potential energy of the spring is equal to the sum of final spring potential energy and the kinetic energy of cork such that,

v is the muzzle velocity of this cork.


v = 2 m/s
So, the muzzle velocity of this cork is 2 m/s. Hence, this is the required solution.
There may be an esoteric technical shade or nuance of difference. But I've been an electrical engineer for 40 years now, and have always used them interchangeably.
(I would have answered your question by saying "No.", but this website won't accept an answer that's less than 200 characters long.)
Answer:
F=480.491 N
Explanation:
Given that
mass ,m = 22 kg
Angular speed ω = 40 rev/min

ω =4.18 rad/s
The radius r= 1.25 m
We know that centripetal force is given as
F=m ω² r
Now by putting the values in the above equation we get

F=480.491 N
Therefore the centripetal force on the child will be 480.491 N.
I'm pretty sure the answer is B: <span>establish public doubt
Hope this helps!</span>