Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.
Let
be the average acceleration over the first 2.46 seconds, and
the average acceleration over the next 6.79 seconds.
At the start, the car has velocity 30.0 m/s, and at the end of the total 9.25 second interval it has velocity 15.2 m/s. Let
be the velocity of the car after the first 2.46 seconds.
By definition of average acceleration, we have


and we're also told that

(or possibly the other way around; I'll consider that case later). We can solve for
in the ratio equation and substitute it into the first average acceleration equation, and in turn we end up with an equation independent of the accelerations:


Now we can solve for
. We find that

In the case that the ratio of accelerations is actually

we would instead have

in which case we would get a velocity of

Answer:
The momentum is 1.94 kg m/s.
Explanation:
To solve this problem we equate the potential energy of the spring with the kinetic energy of the ball.
The potential energy
of the compressed spring is given by
,
where
is the length of compression and
is the spring constant.
And the kinetic energy of the ball is

When the spring is released all of the potential energy of the spring goes into the kinetic energy of the ball; therefore,

solving for
we get:

And since momentum of the ball is
,

Putting in numbers we get:


Solid has vibrating molecules that barely move to keep it's shape
liquid moves at an average speed and keeps it's volume but not it's shape
gases move quickly and all over the place so they don't have a shape or volume
plasma is the quickest moving and is like a gas
Answer:
Option B, two walls and the floor
Explanation:
The distance should be measured from the point where at least the three axed meet.
Two walls and the floor are equivalent to three axes.
Vertical wall 1 = Y Axis
Horizontal wall2 = X Axis
Floor = Z Axis
Thus, the distance should be measured from the point where two walls and one floor meet.
Option , B is correct