Answer: 0.512 kgm²
Explanation:
Given
Force, F = 2*10^3 N
Angular acceleration, α = 121 rad/s²
Lever arm, r(⊥) = 3.1 cm = 3.1*10^-2 m
τ = r(⊥) * F
Also,
τ = Iα
Using the first equation, we have
τ = r(⊥) * F
τ = 0.031 * 2*10^3
τ = 62 Nm
Now we calculate for the inertia using the second equation
τ = Iα, making I subject of formula, we have
I = τ / α, on substituting, we have
I = 62 / 121
I = 0.512 kgm²
Thus, the moment of inertia of the boxers forearm is 0.512 kgm²
All black surfaces is the correct answer
u = 0.077
Explanation:
Work done by friction is
Wf = ∆KE + ∆PE
-umgx = ∆KE,. ∆PE =0 (level ice surface)
-umgx = KEf - KEi = -(1/2)mv^2
Solving for u,
u = v^2/2gx
= (12 m/s)^2/2(9.8 m/s^2)(95 m)
= 0.077
I will answer both versions assuming what you want to know is the distance it travels up from and over the ground. and how long until it reaches space. 540 meters per second up and over. to reach space which is 100km above sea level, it would take about 5400 minutes