Answer:
∠STU = 69°
Step-by-step explanation:
The angle with vertex T is called an "inscribed angle." It intercepts arc SU. The relationship you are asked to remember is that the measure of the inscribed angle (T) is half the measure of the arc SU.
Point V is taken to be the center of the circle. The angle with vertex V is called a "central angle." It also intercepts arc SU. The relationship you are asked to remember is that the measure of the central angle (V) is equal to the measure of arc SU.
__
Using these two relationships together, we realize angle V is twice the measure of angle T:
∠SVU = 2×∠STU
18x +12° = 2(18x -57°) . . . . . . relationship between the marked angles
18x +12° = 36x -114° . . . . . eliminate parentheses
126° = 18x . . . . . . . . . . . add 114°-18x
∠STU = 18x -57° = 126° -57°
∠STU = 69°
_____
<em>Additional comment</em>
You may notice we did not solve for x. We only needed to know the value of 18x, so we stopped when we found that value. (Actually, we only need the value of 18x-57°. See below.)
__
<em>Alternate solution</em>:
(18x +12°) -(18x -57°) = 18x -57° . . . . . . . subtract 18x -57° from both sides of the first equation.
69° = 18x -57° . . . . . simplify. This is the answer to the problem.
Answer:y=-4
Step-by-step explanation:
Answer: Well, I thought about it and I was like, Well 813 right? Then I realized the question and was like: Nvm lol (Hope you find the answer!)
Answer: z score = 0.00714
Step-by-step explanation: the value of test statistics is gotten using the standard normal distribution table.
Z= 2.45 has area to the left (z<2.45) and area to the right (z>2.45).
Level of significance α is the probability of committing a type 1 error. The area under the distribution is known as the rejection region and it is the area towards the right of the distribution.
The table I'm using is towards the left of the distribution.
But z>2.45 + z<2.45 = 1
z> 2.45 = 1 - z<2.45
But z < 2.45 = 0.99286
z > 2.45 = 1 - 0.99286
z >2.45 = 0.00714
Hence the test statistics that would produce the least type 1 error is 0.00714