Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
It gets blurred and you can't see the light very well.
Therefore, the kinetic energy of an object is proportional to the square of its velocity (speed). In other words, If there is a twofold increase in speed, the kinetic energy will increase by a factor of four. If there is a threefold increase in speed, the kinetic energy will increase by a factor of nine.