Answer:
- Wind resistance made decrease in speed
-Gravity/Mass made decrease in velocity
Explanation:
Answer:
charges of the beads is 1.173 ×
C
Explanation:
given data
mass = 3.8589 g = 0.003859 kg
spring length = 5 cm = 0.05 m
extend spring x = 1.5747 cm = 0.15747 m
spring's extension = 0.0116 m
to find out
charges of the beads
solution
we know that force is
force = mass × g
force = 0.003859 × 9.8
force = 0.03782 N
so we know force for mass
force = -kx
so k = force / x
put here force and x value
k = -0.03782 / 0.1575
k = -0.24 N/m
and
force for spring's extension
force = -kx
force = -0.24 ( 0.0116) = 0.002784 N
so here
total length L = 0.05 + 0.0116 = 0.0616
so charges of the beads = force × L² / ke
charges of the beads = 0.002784 × (0.0616)² / (9 ×
)
so charges of the beads = 1.173 ×
C
Answer:
If the system consists of the block only, the work done by the gravity is negative.
If the system consists of the block and the earth the work done by the gravity is zero.
Explanation:
If the system consists of the block only, then the system experiences two external forces: one exerted by the hand that lifts the block vertically upward and other exerted by the earth (gravity), which is opposed to the movement of the system, so the work done by gravity is negative.
On the other hand, if the system consists of the block and the earth, then only exists a external force which is the exerted by the hand. So, the force exerted by gravity is zero.
Answer:
The potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Explanation:
Given
Work done W = 3J
Amount of Charge q = 10C
To determine
We need to determine the potential difference V between the places.
The potential difference between the two points can be determined using the formula
Potential Difference (V) = Work Done (W) / Amount of Charge (q)
or

substituting W = 3 and q = 10 in the formula

V
Therefore, the potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.