Answer:
.
Step-by-step explanation:
The equation of a circle of radius
centered at
is:
.
.
Differentiate implicitly with respect to
to find the slope of tangents to this circle.
![\displaystyle \frac{d}{dx}[x^{2} + y^{2}] = \frac{d}{dx}[25]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B2%7D%20%2B%20y%5E%7B2%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B25%5D)
.
Apply the power rule and the chain rule. Treat
as a function of
,
.
.
.
That is:
.
Solve this equation for
:
.
The slope of the tangent to this circle at point
will thus equal
.
Apply the slope-point of a line in a cartesian plane:
, where
is the gradient of this line, and
are the coordinates of a point on that line.
For the tangent line in this question:
,
.
The equation of this tangent line will thus be:
.
That simplifies to
.
(-10m^4n^7)(-3m^4n)
= -10*-3 m^4*m^4 * n^7* n^1
= 30m^8n^8
Answer:
The answer is A.
Step-by-step explanation:
A- slope is 7
B- slope is 3
C- slope is 4
D- slope is 6
Answer:
128
Step-by-step explanation:
72 people are vegetarians so 200-72=128
Notice that

, so

Then taking the positive square root gives

so
and
.