Answer:
look at the rest
Step-by-step explanation:
1.)same line
2.)intersect
3.)parallel
4.)ordered pair
Answer:
nth term = 1 1/2n -1
Step-by-step explanation:
The arithmetic sequence formula is:
a
n
=
a
1
+
(
n
–
1
)
d
Where:
a
n
is the nth term in the sequence
a
1
is the first term in the sequence
n
is the term you are solving for
d
is the common difference for any pair of consecutive numbers in the sequence.
First Term or
n
=
1
:
This is given in the problem.
a
1 = 9
Second Term or
n
=
2
:
Substitute
2 for n
in the formula and substitute the values from the problem giving:
a
2
=
9
+
(
(
2
–
1
)
×
-2
)
a
2
=
9
+
(
1
×
-2
)
a
2
=
9
+-2
a
2
=
7
Fifth Term or n
=
5
:
Substitute in the formula and substitute the values from the problem giving:
a
5
=
9+
(
(
5–
1
)
×
-2
)
a
5
=
9
+
(
4
×
-2
)
a
2
=
9
+
-8
a
2
= 1
Using this same process you should be able to determiner the
Third Term or n
=
3
: and Fourth Term or n
=
4
:
The value of f[ -4 ] and g°f[-2] are
and 13 respectively.
<h3>What is the value of f[-4] and g°f[-2]?</h3>
Given the function;


- f[ -4 ] = ?
- g°f[ -2 ] = ?
For f[ -4 ], we substitute -4 for every variable x in the function.

For g°f[-2]
g°f[-2] is expressed as g(f(-2))
![g(\frac{3x-2}{x+1}) = (\frac{3x-2}{x+1}) + 5\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2}{x+1} + \frac{5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{3x-2+5(x+1)}{x+1}\\\\g(\frac{3x-2}{x+1}) = \frac{8x+3}{x+1}\\\\We\ substitute \ in \ [-2] \\\\g(\frac{3x-2}{x+1}) = \frac{8(-2)+3}{(-2)+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-16+3}{-2+1}\\\\g(\frac{3x-2}{x+1}) = \frac{-13}{-1}\\\\g(\frac{3x-2}{x+1}) = 13](https://tex.z-dn.net/?f=g%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%2B%205%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%20%2B%20%5Cfrac%7B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B3x-2%2B5%28x%2B1%29%7D%7Bx%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8x%2B3%7D%7Bx%2B1%7D%5C%5C%5C%5CWe%5C%20substitute%20%5C%20in%20%5C%20%5B-2%5D%20%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B8%28-2%29%2B3%7D%7B%28-2%29%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-16%2B3%7D%7B-2%2B1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%20%5Cfrac%7B-13%7D%7B-1%7D%5C%5C%5C%5Cg%28%5Cfrac%7B3x-2%7D%7Bx%2B1%7D%29%20%3D%20%2013)
Therefore, the value of f[ -4 ] and g°f[-2] are
and 13 respectively.
Learn more about composite functions here: brainly.com/question/20379727
#SPJ1