Answer:
c^3 + c^2 - 7c + 20
Step-by-step explanation:
First, expand the expression using distributive property.
c^2(c+4) - 3c(c+4) + 5(c+4)
c^3 + 4c^2 - 3c^2 - 12c + 5c + 20
Lastly, simplify like terms.
c^3 + c^2 - 7c + 20
The sum means addition.
Add the like terms together.
4x^3+2x^2-4x+3
+ 7x^3-4x^2+7x+8
4x^3 + 7x^3 = 11x^3
2x^2 + -4x^2 = -2x^2
-4x +7x = 3x
3 +8 = 11
The answer is : 11x^3 - 2x^2 + 3x + 11
Answer:
- A. segment A double prime B double prime = segment AB over 2
Step-by-step explanation:
<u>Triangle ABC with coordinates of:</u>
- A = (-3, 3), B = (1, -3), C = (-3, -3)
<u>Translation (x + 2, y + 0), coordinates will be:</u>
- A' = (-1, 3), B = ( 3, -3), C = (-1, -3)
<u>Dilation by a scale factor of 1/2 from the origin, coordinates will be:</u>
- A'' = (-0.5, 1.5), B'' = (1.5, -1.5), C= (-0.5, -1.5)
<u>Let's find the length of AB and A''B'' using distance formula</u>
- d = √(x2-x1)² + (y2 - y1)²
- AB = √(1-(-3))² + (-3 -3)² = √4²+6² = √16+36 = √52 = 2√13
- A''B'' = √(1.5 - (-0.5)) + (-1.5 - 1.5)² = √2²+3² = √13
<u>We see that </u>
<u>Now the answer options:</u>
A. segment A double prime B double prime = segment AB over 2
B. segment AB = segment A double prime B double prime over 2
- Incorrect. Should be AB = A''B''*2
C. segment AB over segment A double prime B double prime = one half
- Incorrect. Should be AB/A''B'' = 2
D. segment A double prime B double prime over segment AB = 2
- Incorrect. Should be A''B''/AB = 1/2
She bought 8 apples..................