1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
2 years ago
15

A basketball player is 4.22 m from

Physics
2 answers:
lianna [129]2 years ago
5 0

Answer:

3.10 m

Explanation:

Given;

Initial speed of ball u = 9.20 m/s

Angle θ = 69°

Horizontal distance from goal d = 4.22m

Resolving the initial velocity into horizontal and vertical components;

The horizontal component of the initial velocity;

uh = ucosθ

Substituting the given values;

uh = 9.2cos69°

uh = 3.30 m/s

The time taken for it to cover the horizontal distance of 4.22 m (to reach the goal);

Time = distance/speed = d/uh

time = 4.22/3.30 =. 1.279s

The time taken to reach the goal is 1.279 seconds.

To determine the height of the ball, we will resolve the vertical component of the initial velocity;

Vertical component of the ball velocity is;

Uv = usinθ

Uv = 9.20sin69°

Uv = 8.59 m/s

Applying the equation of motion;

Height h = ut - 0.5gt^2

Velocity u = Uv = 8.59 m/s

Time t = 1.279s

Acceleration due to gravity g = 9.8 m/s^2

Substituting the values;

h = 8.69(1.279) - 0.5(9.8×1.279^2)

Height h = 3.0988891 = 3.10 m

The height of ball above the release point is 3.10m

max2010maxim [7]2 years ago
3 0

Answer: The height above the release point is 2.96 meters.

Explanation:

The acceleration of the ball is the gravitational acceleration in the y axis.

A = (0, -9.8m/s^)

For the velocity we can integrate over time and get:

V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))

for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)

P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)

now, the time at wich the horizontal displacement is 4.22 m will be:

4.22m = 9.20*cos(69°)*t

t = (4.22/ 9.20*cos(69°)) = 1.28s

Now we evaluate the y-position in this time:

h =  -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m

The height above the release point is 2.96 meters.

You might be interested in
What are the characteristics of an index fossil?
vichka [17]
I think as a mold. when the Flood came in Genesis, i believe that when the fish were washed away, the kinda made a mold in a rock.
4 0
2 years ago
Read 2 more answers
Could someone explain to me how to got the answer B, thank you very much​
Mnenie [13.5K]

Answer:

since -6 lasted for 5 seconds, multiplying both would result in -30

3 lasted for 10 seconds, so multiplying both would give +30

average = ( 30 + (-30) ) / 2

30 -30 is already equal to zero, so the answer should be 0

4 0
3 years ago
An unknown material has a mass of 0.447 kg, and its temperature increases by 2.87°C when 943 J of heat are added. What is the sp
Sergeeva-Olga [200]

Answer:

735 J/kg/C

Explanation:

Q = mcT

943 = (0.447)( c )(2.87)

1.28289c = 943

c = <u>7</u><u>3</u><u>5</u><u> </u><u>J</u><u>/</u><u>k</u><u>g</u><u>/</u><u>C</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u>

4 0
2 years ago
Two identical satellites are in orbit about the earth. One orbit has a radius r and the other 2r. The centripetal force on the s
velikii [3]

Answer:

the centripetal force on the satellite in the larger orbit is _one fourth_ as that on the satellite in the smaller orbit.

Explanation:

Mass of satellite, m

orbit radius of first, r1 = r

orbit radius of second, r2  = 2r

Centripetal force is given by

F= \frac{mv^{2}}{r}

Where v be the orbital velocity, which is given by

v=\sqrt{gr}

So, the centripetal force is given by

F= \frac{mgr}}{r}}=mg

where, g bet the acceleration due to gravity

g=\frac{GM}{r^{2}}

So, the centripetal force

F= \frac{GMm}}{r^{2}}}

Gravitational force on the satellite having larger orbit

F= \frac{GMm}{4r^{2}} .... (1)

Gravitational force on the satellite having smaller orbit

F'= \frac{GMm}{r^{2}} .... (2)

Comparing (1) and (2),

F' = 4 F

So, the centripetal force on the satellite in the larger orbit is _one fourth_ as that on the satellite in the smaller orbit.

8 0
3 years ago
A particle moves in a straight line with the velocity function v ( t ) = sin ( w t ) cos 3 ( w t ) . find its position function
Sunny_sXe [5.5K]

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

<h3>How to get the position equation of the particle?</h3>

Let the velocity of the particle is:

$v(t)=\sin (\omega t) * \cos ^2(\omega t)

To get the position equation we just need to integrate the above equation:

$f(t)=\int \sin (\omega t) * \cos ^2(\omega t) d t

$\mathrm{u}=\cos (\omega \mathrm{t})

Then:

$d u=-\sin (\omega t) d t

\Rightarrow d t=-d u / \sin (\omega t)

Replacing that in our integral we get:

$\int \sin (\omega t) * \cos ^2(\omega t) d t$

$-\int \frac{\sin (\omega t) * u^2 d u}{\sin (\omega t)}-\int u^2 d t=-\frac{u^3}{3}+c$

Where C is a constant of integration.

Now we remember that $u=\cos (\omega t)$

Then we have:

$f(t)=\frac{\cos ^3(\omega t)}{3}+C

To find the value of C, we use the fact that f(0) = 0.

$f(t)=\frac{\cos ^3(\omega * 0)}{3}+C=\frac{1}{3}+C=0

C = -1 / 3

Then the position function is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

Integrating the velocity equation, we will see that the position equation is:

$f(t)=\frac{\cos ^3(\omega t)-1}{3}

To learn more about motion equations, refer to:

brainly.com/question/19365526

#SPJ4

4 0
1 year ago
Other questions:
  • What do the vertical columns in the periodic table indicate?
    12·2 answers
  • A ____ is the time required for one half of the nuclei in a radio- ____ isotope to decay.
    9·1 answer
  • The graph below shows the velocity of a car as it attempts to set a speed record. At what point is the car the fastest?
    14·1 answer
  • Calculate the acceleration of a 1400-kg car that stops from 39 km/h "on a dime" (on a distance of 1.7 cm).
    5·1 answer
  • The energy of a photon is proportional to its a) amplitude. d) wave number, k-2m/A c) velocity. b) frequency
    14·1 answer
  • Desi and Consuela are arguing about how to spend the tax refund they received. He says they should get the car fixed; she says t
    14·1 answer
  • A robin flies a distance of 45963 cm. How far has it flown in kilometers?
    13·1 answer
  • When you catch a baseball with a glove (instead of your hand), the glove helps by
    15·1 answer
  • Developing a Claim
    6·1 answer
  • In the absence of a gravitational force, the weight of a body is?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!