Answer:
Explanation:
For elastic collision , the formula for velocity of .06 kg is
v₁ = (m₁-m₂)/(m₁+m₂) u₁ + 2m₁m₂/(m₁+m₂) u₂
=( .06-.09 / .06+.09 ) 5.5 + (2 x .06 x .09 / .06+.09 ) 3.4
=( -.03 / .15) x 5.5 + (2 x .0054 / .15) x 3.4
= -1.1 +.2448
= - 0 .8552 m/s
Its direction will be - opposite direction
the formula for velocity of .09kg is
v₂ = (m₂-m₁)/(m₁+m₂) u₂ + 2m₁m₂/(m₁+m₂) u₁
= ( .09-.06 / .06+.09 ) 3.4 + (2 x .06 x .09 / .06+.09 ) 5.5
= .68 +.396
= 1.076 m / s
Its direction will be in the same direction .
The answer is kilometers.
Two half lives so it is 4000 years old
Answer:
191.36 N/m
Explanation:
From the question,
The Potential Energy of the safe = Energy of the spring when it was compressed.
mgh = 1/2ke²............... Equation 1
Where m = mass of the safe, g = acceleration due to gravity, h = height of the save above the heavy duty spring , k = spring constant, e = compression
Making k the subject of the equation,
k =2mgh/e²................ Equation 2
Given: m = 1100 kg, h = 2.4 mm = 0.0024 m, e = 0.52 m
Constant: g = 9.8 m/s²
Substitute into equation 2
k = 2(1100)(9.8)(0.0024)/0.52²
k = 51.744/0.2704
k = 191.36 N/m
Hence the spring constant of the heavy-duty spring = 191.36 N/m