Answer:
t = 10.1 s
d = 2020 m
Explanation:
Time to drop from vertical rest
h = ½gt²
t = √(2h/g) = √(2(500)/9.8) = 10.1 s
d = vt = 200(10.1) = 2020 m
Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
The presence of mass makes gravity. Doesn't matter whether it's a planet, a black hole, a puppy, or a speck of dust.
C. cell body encapsulate the nucleus and the other parts of a cell