1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nina [5.8K]
3 years ago
10

Which planets can never be seen at midnight? A. The Superior planets. B. The Inferior planets C. All planets can be seen at midn

ight if you wart D. No planets can be seen at midnight enough.
Physics
1 answer:
sweet-ann [11.9K]3 years ago
7 0

Answer:

A

Explanation:

Superior planets are further away from the sun than the Inferior planets making the superior planets easier to see at midnight.

You might be interested in
A student connects an object with mass m to a rope with a length r and then rotates the rope around her head parallel to the gro
Alexandra [31]

The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.

Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that

2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s

thus giving it a centripetal acceleration of

<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².

Then the tension in the rope is

<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.

7 0
2 years ago
A. Use the graph and the element made in question 2 to determine the mass of the star.
Minchanka [31]
Black balls with blue waffles
4 0
2 years ago
A 10-cm-long thin glass rod uniformly charged to 8.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 8.00 nCnC ar
ch4aika [34]

Complete Question

A 10-cm-long thin glass rod uniformly charged to 8.00 nC and a 10-cm

long thin plastic rod uniformly charged to -8.00 nC are placed side by

side, 4.20 cm apart. What are the electric field strengths E_1 to E_3 at

distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line

connecting the midpoints of the two rods

a.) Specify the electric field strength E1

b.) Specify the electric field strength E2

c.) Specify the electric field strength E3

Answer:

              E_1=7.13*10^5 N/C

             E_2= 2.95*10^{5} N/C

              E_3= 3.84*10^5 N/C

Explanation:

  From the question we are told that

          The length of the thin glass is  L = 10 cm

          The  charge on the glass rod is  q_g = 8.00nC = 8* 10^{-9} C

           The length of the plastic rod is  L_p = 10cm

             The charge on the  plastic rod is q_p =- 8.00nC = -8.0*10^{-9}C

           The distance between the materials  is d = 4.20cm = \frac{4.2}{100} =0.042m

          The various distances to obtain electric field of are r_1 = 1.0cm

                                                                                                r_2 = 2.0cm

                                                                                                 r_3 = 3.0cm

The objective of the solution is to obtain the electric field E_1 , E_2 \ and E_3 at distance d_1 , d_2 \ and \ d_3  from the glass rod  along the line connecting its mid point  

   Generally electric field of a charge rod at a distance of r the line dividing the rod  into half  is mathematically represented as

                              E = k \frac{2Q}{r\sqrt{L^2 + 4r^2} }

For the  r_2 = 1.0cm = \frac{1}{100} = 0.01m

The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r \sqrt{L^2 + 4r^2_1} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_1) \sqrt{L^2 + 4r^2_1} }

The net electric field is,

            E_{net} =E_1= E_l + E_r

                    = k \frac{2Q}{r_1\sqrt{L^2 + 4 r^2_1 } } + k \frac{2Q}{(0.04-r_1) \sqrt{L^2 + 4 (0.044 -r_1)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.01)\sqrt{(0.01^2 + 4(0.01)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.01)\sqrt{(0.01)^2 + (4) (0.042 - 0.01)^2} }

                           = 6.44*10^5 + 6.9*10^4

                           E_1=7.13*10^5 N/C

For the  r_2 = 2.0cm = \frac{2}{100} = 0.02m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_2 \sqrt{L^2 + 4r^2_2} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_2) \sqrt{L^2 + 4r^2_2} }

The net electric field is,

            E_{net} =E_2= E_l + E_r

                    = k \frac{2Q}{r_2\sqrt{L^2 + 4 r^2_2 } } + k \frac{2Q}{(0.04-r_2) \sqrt{L^2 + 4 (0.044 -r_2)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.02)\sqrt{(0.02^2 + 4(0.02)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.02)\sqrt{(0.02)^2 + (4) (0.042 - 0.02)^2} }

            = 1.6*10^{5}+ 1.3*10^{5}

             E_2= 2.95*10^{5} N/C

For the  r_3 = 3.0cm = \frac{3}{100} = 0.03m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_3 \sqrt{L^2 + 4r^2_3} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_3) \sqrt{L^2 + 4r^2_3} }

The net electric field is,

            E_{net} =E_3= E_l + E_r

                    = k \frac{2Q}{r_3\sqrt{L^2 + 4 r^2_3 } } + k \frac{2Q}{(0.04-r_3) \sqrt{L^2 + 4 (0.044 -r_3)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.03)\sqrt{(0.03^2 + 4(0.03)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.03)\sqrt{(0.03)^2 + (4) (0.042 - 0.03)^2} }

        = 7.2 *10^{4} + 3.1*10^5

      E_3= 3.84*10^5 N/C                

8 0
2 years ago
7.) What is the relationship between kinetic and potential energy?
Arte-miy333 [17]
We know that potential energy is the energy that is stored within an object while kinetic energy is the energy that is in motion. The connection between the two is that potential energy transforms into kinetic energy
4 0
2 years ago
At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s.
Hitman42 [59]

Answer:

-2.67 m/s²

Explanation:

a = Δv / Δt

a = (14 m/s − 30 m/s) / (6 s − 0 s)

a = -2.67 m/s²

4 0
3 years ago
Other questions:
  • Write the following number in scientific notation 156.60
    11·1 answer
  • A state patrol officer saw a car start from rest at a highway​ on-ramp. She radioed ahead to another officer 20 mi along the hig
    9·1 answer
  • Which of these is a TRUE statement? A) Sound travels through gases easier than liquids. B) Sound travels through solids easier t
    14·2 answers
  • Which theory best explains the present arrangement of continents oceans and landforms on earth? A the Pangaea theory B The conti
    11·1 answer
  • Which two conditions would result in the strongest electric force between charged objects
    15·2 answers
  • Which wave must have a medium to travel?
    7·2 answers
  • What would be the answer for this and how?
    12·1 answer
  • The Sears Tower in Chicago is approximately 444 m tall Suppose a book
    14·1 answer
  • Periodic table of elements metals and nonmetals questions
    7·2 answers
  • A plane flying horizontally at 384 m/s releases a package at an altitude of 15,721 m.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!