Answer:
Gamma rays occupy the short-wavelength end of the spectrum; they can have wavelengths smaller than the nucleus of an atom. Visible light wavesare one-thousandths the width of human hair--about a million times longer than gamma rays. Radio waves, at the long-wavelength end of the spectrum, can be many meters long.
Answer:
a. Object A
Explanation:
The mass of an object implies the quantity of matter in it, while the weight is the amount of gravitational force applied on an object.
The object A has a mass of 25 lbs, but object B on the earth has a weight, W, of 25 N.
So that,
For object A on the moon, mass = 25 lbs
For object B on the earth, W = 25 N,
W = m x g
25 = m x 10 (g = 10 m/
)
m = 
= 2.5 lbs
Mass of object B is 2.5 lbs.
Therefore, the mass of the object A is more than that of B.
Answer:
b. able to travel through a vacuum.
Explanation:
The most distinguishing factor of an electromagnetic waves is that they are able to travel through a vacuum.
These waves do not require materials in a medium for propagation.
- Electromagnetic waves are formed by the propagation of the electric and magnetic fields.
- They vibrate at an angle of 90° .
- They are unlike like mechanical waves that requires that requires materials in medium for their propagation.
Answer:
B. Technician B only
Explanation:
An oscilloscope can be used to check the output signal of an optical sensor. The oscilloscope has the functioning of viewing the results in the form of waveform and its time scale settings can be altered to meet the requirements of the results.
A voltmeter cannot be <u>directly</u> used to monitor the output signal of an optical sensor. But a <u>digital multi-meter</u> can be used to check an optical sensor if the digital multi-meter is set on AC - Volt reading mode.