Answer: a. ) What is the magnitude of their average acceleration (in m/s2)
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
Answer:

Explanation:
As we know that average velocity is defined as the ratio of total displacement of the object and its time interval.
so here we can say

now we know that in one complete revolution the total displacement of the tip of the seconds hand is zero
because it will have same position after one complete revolution from where it starts
so here we can say that the average velocity will be zero

Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
The component of the force in negative z-direction is -0.144 N.
The given parameters;
- <em>current in the wire, I = 2.7 A</em>
- <em>length of the wire, L = (3.2 i + 4.3j) cm</em>
- <em>magnetic filed, B = 1.24 i</em>
The force on the segment of the wire is calculated as follows;

where;
- <em>θ is the angle wire and magnetic field</em>
<em />
The force on the wire segment will be perpendicular in negative z-direction (applying right hand rule), so there won't be any x and y component of the force.
The angle between the wire and the magnetic field is calculated as follows;

The magnitude of the wire length is calculated as follows;

The component of the force in negative z-direction is calculated as;

Thus, the component of the force in negative z-direction is -0.144 N.
Learn more here:brainly.com/question/22719779