Answer:
The common difference is -5/4
T(n) = T(0) - 5n/4,
where T(0) can be any number. d = -5/4
Assuming T(0) = 0, then first term
T(1) = 0 -5/4 = -5/4
Step-by-step explanation:
T(n) = T(0) + n*d
Let
S1 = T(x) + T(x+1) + T(x+2) + T(x+3) = 4*T(0) + (x + x+1 + x+2 + x+3)d = 240
S2 = T(x+4) + T(x+5) + T(x+6) + T(x+7) = 4*T(0) + (x+5 + x+6 + x+7 + x+8)d = 220
S2 - S1
= 4*T(0) + (x+5 + x+6 + x+7 + x+8)d - (4*T(0) + (x+1 + x+2 + x+3 + x+4)d)
= (5+6+7+8 - 1 -2-3-4)d
= 4(4)d
= 16d
Since S2=220, S1 = 240
220-240 = 16d
d = -20/16 = -5/4
Since T(0) has not been defined, it could be any number.
Id say it 93.57 i believe
Answer:
Yes
Step-by-step explanation:
Assuming that the question is asking for -1 to be plugged in as x
4(-1)-3≤5
-4-3≤5
-7≤5
Answer:
a.) one sample t test
b.) H0 : μ = 59.3
c.) H1 : μ > 59.3
d.) μ = 59.3 ; σ = 39.84
e.) xbar = 79.4 ; s = 61.36
Test statistic = 3.16
Step-by-step explanation:
Given the sample data:
49.00 49.00 49.00 49.00 49.00 63.00 63.00 63.00 63.00 63.00 199.00 199.00 199.00 199.00 199.00 38.00 38.00 38.00 38.00 38.00 48.00 48.00 48.00 48.00 48.00 49.00 63.00 199.00 38.00 48.00
Sample size, n = 30
Using calculator :
xbar from the data above = 79.4
Standard deviation = 61.359
H0 : μ = 59.3
H1 : μ > 59.3
Test statistic :
(Xbar - μ) ÷ (σ/sqrt(n)
σ = 34.83
(79.4 - 59.3) ÷ (34.83/sqrt(30))
20.1 ÷ 6.359
Test statistic = 3.16