Answer:
C
You have to do it step by step
x•x-5x+6x-30
Answer:
Step-by-step explanation:
w=204.8
We use P = i•e^rt for exponential population growth, where P = end population, i = initial population, r = rate, and t = time
P = 2•i = 2•15 = 30, so 30 = 15 [e^(r•1)],
or 30/15 = 2 = e^(r)
ln 2 = ln (e^r)
.693 = r•(ln e), ln e = 1, so r = .693
Now that we have our doubling rate of .693, we can use that r and our t as the 12th hour is t=11, because there are 11 more hours at the end of that first hour
So our initial population is again 15, and P = i•e^rt
P = 15•e^(.693×11) = 15•e^(7.624)
P = 15•2046.94 = 30,704
Answer:
Step-by-step explanation:
Since there's no one one number you can add to one number in the sequence to get to the next number, this is not arithmetic. It must be geometric. We need then to find the common ratio. Let's start with the first 2 numbers, find a ratio, and then use it to test for accuracy.
10x = 15 and
x =
If this is in fact a geometric sequence witha common ratio of 3/2, we should be able to multiply 15 by 3/2 to get to the next number in the sequence. Let's try it out:
Good. So the common ratio is 3/2. The formula for an explicit geometric formula is
where a1 is the first number in the sequence and r is the common ratio. Filling in:

The area is 7.07
A=1/4(pi)d^2