Answer:
In a two particle system, the center of mass lies on the center of the line joining the two particles.
Answer:
The number of turns of the solenoid is 3536 turns
Explanation:
Given;
magnetic field of the solenoid, B = 0.1 T
current in the solenoid, I = 1.8 A
length of the solenoid, L = 8cm = 0.08m
The magnetic field near the center of the solenoid is given by;
B = μ₀nI
Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
n is number of turns per length
I is the current in the coil
The number of turns per length is calculated as;
n = B / μ₀I
n = (0.1 ) / (4π x 10⁻⁷ x 1.8)
n = 44203.95 turns/m
The number of turns is calculated as;
N = nL
N = (44203.95)(0.08)
N = 3536 turns
Therefore, the number of turns of the solenoid is 3536 turns
Acceleration is defined as the rate of change of velocity, which, simply put, is a mouthful to describe how fast something speeds up, slows down, or turns. The equation for acceleration is
a = Δv / Δt,
or your final velocity - your starting velocity, then divided by the amount of time. It can also be expressed as
a = (Vf - Vi) / t,
Where Vf is your final velocity, Vi is your initial velocity, and t is the time traveled.
The question gives us that the helicopter moves from a starting velocity of 30 m/s to a final velocity of 40 m/s in the span of 5 seconds. This means we can fill in the variables to the equation, where
Vf = 40,
Vi = 30, and
t = 5.
Plug these known variables into the original equation, and we get
a = (Vf - Vi) / t = (40 - 30) / 5.
From here, the answer comes down to 10 / 5, or 2 m/s^2.
Hope this helps! If you have any questions, don't hesitate to ask :D