Answer:
Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320.
Explanation:
The universal law of gravitation states that the force between two objects in the universe is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
We have to choose the satellite having greatest gravitational force with earth. In all options the distance from the earth is same i.e. 320 km. So, we have to select the satellite having maximum mass because the mass of the earth is constant.
Hence, the correct option is (D) " Satellite D has a mass (kg) of 500 and the distance from Earth (km) is 320 ".
Answer:
0.739
Explanation:
If we treat the four tire as single body then
W ( weight of the tyre ) = mass × acceleration due to gravity (g)
the body has a tangential acceleration = dv/dt = 5.22 m/s², also the body has centripetal acceleration to the center = v² / r
where v is speed 25.6 m/s and r is the radius of the circle
centripetal acceleration = (25.6 m/s)² / 130 = 5.041 m/s²
net acceleration of the body = √ (tangential acceleration² + centripetal acceleration²) = √ (5.22² + 5.041²) = 7.2567 m/s²
coefficient of static friction between the tires and the road = frictional force / force of normal
frictional force = m × net acceleration / m×g
where force of normal = weight of the body in opposite direction
coefficient of static friction = (7.2567 × m) / (9.81 × m)
coefficient of static friction = 0.739
Answer:
- <em>In both cases the tension in the rope is </em><u>equal to 500N</u>
Explanation:
It may be that in the case of the <em>tree</em>, the result is more intuitive, because you can think that there is only one force. But this is misleading.
To find the <em>tension in the rope</em>, you should draw a free body diagram. By doing so, you would find that the rope is static because there are two opposite forces. Assuming, for simplicity, that the rope is horizontal, a force of 500N is pulling to one direction (let's say to the right) and a force of 500N is pulling to the opposite direction (to the left). Else, the rope would not be static.
That analysys is the same for the<em> rope tied to the tree</em> ( the tree is pulling with 500N, such as the man, but in opposite direction) and when the rope is pulled by <em>two men</em> on opposite ends, each with<em> forces of 500N.</em>
Hence, the tension is the same and equal to 500N.
Answer:
Particles of electromagnetic radiation exhibit wave behavior
Electromagnetic radiation includes visible light
The specific amount of energy a particular photon possesses is called a quantum
Explanation:
Electromagnetic waves propagate through space perpendicularly to a oscillating magnetic and electric field producing it. Both of these fields oscillates perpendicular to one another, and to the direction of propagation of the wave.
Electromagnetic waves exhibit both wave and particle light behaviors, this phenomenon is known as the wave-particle duality.
Visible light is part of the broad spectrum of waves in the electromagnetic wave spectrum. And each particle of an electromagnetic wave is known as a photon, and they carry energy in discrete amounts called quantum.
Dog
Because the more mass an object has, the greater it’s inertia.
Mark me Brianliest please:)