Average acceleration is
Change in Velocity/change in time
So you could then do Vf-Vi/Tf-Ti
Which would look like 13m/s-6m/s / 1s-0s
Which then is 7m/s/1s which means the acceleration is 7m/s^2
Answer:
12.3 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 894 Hz
fr = 926 Hz
c = 343 m/s
vs = 0 m/s
Find: vr
926 = 894 (343 + vr) / (343 + 0)
vr = 12.3
The speed of the car is 12.3 m/s.
Answer:
1900 meters
Explanation:
30m/s x 30 second = 900 meters
+ 1000 meters starting position
= 1900meters
Answer:
well, as u can tell the top layer will always be the youngest layer aka the newest layer. The farther u go down the older the layers get. So the deeper u dig the farther back in time we see.
Explanation: