1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
8

Input Energy ---> Output Energy

Engineering
1 answer:
uranmaximum [27]3 years ago
4 0

Answer:

motion ------> electrical. winds push the turbines which generate a magnetic fields which in turn, generates electricity

You might be interested in
Air-conditioners consume a significant amount of electrical energy in buildings. Split air conditioner is a unitary system where
nydimaria [60]

Answer:

Evaporator,Compressor,Condensor ,Expanding valve

Explanation:

Split air conditioning :

  Split air conditioning means that, condensor unit or some time called outdoor unit is split from evaporator.It means that evaporator and condensor are placed at some distance.

The four component of split air conditioning system are as follows

1.Evaporator

 It absorb heat from room and produces the cooling effect.

2.Compressor

 It compresses the refrigerant which exits from evaporator.

3.Condensor

 It rejects the heat and cool the evaporator.

4.Expanding valve

  It allows to refrigerant to cool up to evaporator pressure.

6 0
3 years ago
1.8 A water flow of 4.5 slug/s at 60 F enters the condenser of steam turbine and leaves at 140 F. Determine the heat transfer ra
Ann [662]

Answer:

Hr=4.2*10^7\ btu/hr

Explanation:

From the question we are told that:

Water flow Rate R=4.5slug/s=144.78ib/sec

Initial Temperature T_1=60 \textdegree F

Final Temperature  T_2=140 \textdegree F

Let

Specific heat of water \gamma= 1

And

 \triangle T= 140-60

 \triangle T= 80\ Deg.F

Generally the equation for Heat transfer rate of water  H_r is mathematically given by

Heat transfer rate to water= mass flow rate* specific heat* change in temperature

 H_r=R* \gamma*\triangle T

 H_r=144.78*80*1

 H_r=11582.4\ btu/sec

Therefore

 H_r=11582.4\ btu/sec*3600

 Hr=4.2*10^7\  btu/hr

3 0
3 years ago
The theoretical maximum specific gravity of a mix at 5.0% binder content is 2.495. Using a binder specific gravity of 1.0, find
PSYCHO15rus [73]

Answer:

The theoretical maximum specific gravity at 6.5% binder content is 2.44.

Explanation:

Given the specific gravity at 5.0 %  binder content 2.495

Therefore

95 % mix + 5 % binder  gives S.G. = 2.495

Where the  binder is S.G. = 1, Therefore

Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495

(95 +5)/(Vx +5) = 2.495

2.495 × (Vx + 5) = 100

Vx =35.08 to 95

Or density of mix = Mx/Vx = 95/35.08 = 2.7081

Therefore when we have 6.5 % binder content, we get

Per 100 mass unit

93.5 Mass unit of Mx has a volume of

Mass/Density = 93.5/2.7081 = 34.526 volume units

Therefore we have

At 6.5 % binder content.

(100 mass unit)/(34.526 + 6.5) = 2.44

The theoretical maximum specific gravity at 6.5% binder content = 2.44.

3 0
3 years ago
A smooth sphere with a diameter of 6 inches and a density of 493 lbm/ft^3 falls at terminal speed through sea water (S.G.=1.0027
Pachacha [2.7K]

Given:

diameter of sphere, d = 6 inches

radius of sphere, r = \frac{d}{2} = 3 inches

density,  \rho} = 493 lbm/ ft^{3}

S.G = 1.0027

g = 9.8 m/ m^{2} = 386.22 inch/ s^{2}

Solution:

Using the formula for terminal velocity,

v_{T} = \sqrt{\frac{2V\rho  g}{A \rho C_{d}}}              (1)

(Since, m = V\times \rho)

where,

V = volume of sphere

C_{d} = drag coefficient

Now,

Surface area of sphere, A = 4\pi r^{2}

Volume of sphere, V = \frac{4}{3} \pi r^{3}

Using the above formulae in eqn (1):

v_{T} = \sqrt{\frac{2\times \frac{4}{3} \pir^{3}\rho  g}{4\pi r^{2} \rho C_{d}}}

v_{T} = \sqrt{\frac{2gr}{3C_{d}}}  

v_{T} = \sqrt{\frac{2\times 386.22\times 3}{3C_{d}}}

Therefore, terminal velcity is given by:

v_{T} = \frac{27.79}{\sqrt{C_d}} inch/sec

3 0
3 years ago
The sliders A and B are connected by a light rigid bar of length l = 20 in. and move with negligible friction in the slots, both
DedPeter [7]

Answer:

Explanation:

Given:

- The Length of the rigid bar L = 20 in

- The position of slider a, x_a = 16 in

- The position of slider b, y_b

- The velocity of slider a, v_a = 3 ft /s

- The velocity of slider b, v_b

- The acceleration of slider a, a_a

- The acceleration of slider b, a_b

Find:

-Determine the acceleration of each slider and the force in the bar at this instant.

Solution:

- The relationship between the length L of the rod and the positions x_a and x_b of sliders A & B is as follows:

                               L^2 = x_a^2 + y_b^2   ....... 1

                               y_b = sqrt( 20^2 - 16^2 )

                               y_b = 12

- The velocity expression can derived by taking a derivation of Eq 1 with respect to time t:

                               0 = 2*x_a*v_a + 2*y_b*v_b

                               0 = x_a*v_a + y_b*v_b   ..... 2

                               0 = 16*36 + 12*v_b

                               v_b = - 48 in /s = -4 ft/s

- Similarly, the acceleration expression can be derived by taking a derivative of Eq 2 with respect to time t:

                               0 = v_a^2 + x_a*a_a + v_b^2 + y_b*a_b

                               0 = 9 + 4*a_a/3 + 16 + a_b

                               4*a_a/3 + a_b = -25

                               4*a_a + 3*a_b = -75  .... 3

- Use dynamics on each slider. For Slider A, Apply Newton's second law of motion in x direction:

                               F_x = m_a*a_a

                               P - R_r*16/20 = m_a*a_a

                               

- For Slider B, Apply Newton's second law of motion in y direction:

                               F_y = m_b*a_b

                               - R_r*12/20 = m_b*a_b

- Combine the two dynamic equations:

                               P - 4*m_b*a_b / 3 = m_a*a_a

                               3P = 3*m_a*a_a + 4*m_b*a_b  ... 4

- Where,                  P = Is the force acting on slider A

                               P , m_a and m_b are known quantities but not given in question. We are to solve Eq 3 and Eq 4 simultaneously for a_a and a_b.                    

5 0
3 years ago
Other questions:
  • Fatigue failure occurs under the condition of (a) High elastic stress (b) High corrosivity (c) High stress fluctuations (d) High
    9·1 answer
  • When an object is moving, we use the following coefficient for friction calculations a)-μk b)-μs c)-γk d)- γs
    9·1 answer
  • What type of companies would employ in mechanics engineering​
    8·1 answer
  • For the following three (3) questions, assume that the link layer uses the flag bytes with byte stuffing approach for framing, w
    15·1 answer
  • IN JAVA,
    6·1 answer
  • A polymeric extruder is turned on and immediately begins producing a product at a rate of 10 kg/min. An operator realizes 20 min
    12·1 answer
  • In the designation of wrought Al alloys, eg. 3m, what does the first digit-3- refer to? A. The main alloying element B. Carbon p
    15·1 answer
  • Why won't Brainly let me make a account or log in? It's always telling me that it can't take my registration at this time or it
    9·1 answer
  • Prelest! Introduction to Engineering and Technology 1 Select the correct answer. What technological invention allowed for the pr
    5·1 answer
  • Which of the following situations best describes student engaged in active learning
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!