Answer:Counter,
0.799,
1.921
Explanation:
Given data




Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
![m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]](https://tex.z-dn.net/?f=m_hc_%7Bph%7D%5Cleft%20%5B%20T_%7Bh_i%7D-T_%7Bh_o%7D%5Cright%20%5D%3Dm_cc_%7Bpc%7D%5Cleft%20%5B%20T_%7Bc_o%7D-T_%7Bc_i%7D%5Cright%20%5D)
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance

=


NTU=1.921





Answer:
B) Process
Explanation:
In thermodynamics a process is a passage of a thermodynamic system from an initial to a final state of thermodynamic equilibrium.
A thermodynamic process path is the series of states through which a system passes from an initial to a final state.
Cycle is a process in which initial and final state are identical.
Answer:
Part A:

CPI cannot be negative so it is not possible to for program to run two times faster.
Part B:

CPI reduced by
=80%
Part C:
New Execution Time=
Increase in speed=
Explanation:
FP Instructions=50*106=5300
INT Instructions=110*106=11660
L/S Instructions=80*106=8480
Branch Instructions=16*106=1696
Calculating Execution Time:
Execution Time=
Execution Time=
Execution Time=
Part A:
For Program to run two times faster,Execution Time (Calculated above) is reduced to half.
New Execution Time=

CPI cannot be negative so it is not possible to for program to run two times faster.
Part B:
For Program to run two times faster,Execution Time (Calculated above) is reduced to half.
New Execution Time=

CPI reduced by
=80%
Part C:

New Execution Time=
New Execution Time=
Increase in speed=
Explanation:
The invention of the pendulums driver ____ ao in the 1600s paved the way for a new industrial era. Add answer.