1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
3 years ago
14

If these components have weights WA = 50000 lb , WB=8000lb, and WC=6000lb, determine the normal reactions of the wheels D, E, an

d F on the ground.

Engineering
1 answer:
VLD [36.1K]3 years ago
5 0

Answer:

F(F) = 15037 lb

F(E) = 24481.5 lb

F(D) =  24481.5 lb

Explanation:

(The diagram of the figure and Free Body Diagram is attached)

<h3>Data given:</h3>

W(A) = 50,000 lb

W(B) = 8000 lb

W(C) = 6000 lb

<h3 /><h3>∑F = 0</h3>

F(F) + F(E) + F(D) - W(A) - W(B) - W(C) = 0

F(F) + F(E) + F(D) = W(A) + W(B) + W(C)

F(F) + F(E) + F(D) = 50000 + 8000 + 6000

F(F) + F(E) + F(D) = 64000 lb

<h3>∑M(o)</h3>

∑M(o) = M(F) + M(E) + M(D) + M(A) + M(B) + M(C)

Where

M(F) = 27i × F(F)k = -27F(F)j

M(E) = 14j × F(E)k = 14F(E)i

M(D) = -14j × F(D)k = -14F(D)i

M(A) = 7i × -50000k = 350,000j

M(B) = (4i - 6j) × -8000k = 48000i + 32000j

M(C) = (4i + 8j) × -6000k = -48000i + 24000j

<h3>∑M(x) = ∑M(i) = 0</h3>

∑M(i) = 14F(E) - 14F(D) = 0

F(E) = F(D)

<h3>∑M(y) = ∑M(j) = 0</h3>

∑M(j) = -27F(F) + 350,000 + 32,000 + 24,000 = 0

27F(F) = 406,000

F(F) = 15037 lb

<h3 /><h3>F(F) + F(E) + F(D) = 64000 lb</h3>

F(E) = F(D)

F(F) + 2F(E) = 64000

2F(E) = 64000 - 15037

2F(E) = 48963

F(E) = 24481.5 lb

F(D) =  24481.5 lb

<h3 /><h3 />

You might be interested in
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. I
Liula [17]

Answer:

  • fire brick / common brick : 1218 °C
  • common brick / magnesia : 1019 °C
  • magnesia / steel : 90.06 °C
  • heat loss: 4644 kJ/m^2/h

Explanation:

The thermal resistance (R) of a layer of thickness d given in °C·m²·h/kJ is ...

  R = d/k

so the thermal resistances of the layers of furnace wall are ...

  R₁ = 0.200/4 = 0.05 °C·m²·h/kJ

  R₂ = 0.120 2.8 = 3/70 °C·m²·h/kJ

  R₃ = 0.05/0.25 = 0.2 °C·m²·h/kJ

  R₄ = 0.003/240 = 1.25×10⁻⁵ °C·m²·h/kJ

So, the total thermal resistance is ...

  R₁ +R₂ +R₃ +R₄ = R ≈ 0.29286 °C·m²·h/kJ

__

The rate of heat loss is ΔT/R = (1450 -90)/0.29286 = 4643.70 kJ/(m²·h)

__

The temperature drops across the various layers will be found by multiplying this heat rate by the thermal resistance for the layer:

  fire brick: (4543.79 kJ/(m²·h))(0.05 °C·m²·h/kJ) = 232 °C

so, the fire brick interface temperature at the common brick is ...

  1450 -232 = 1218 °C

For the next layers, the interface temperatures are ...

  common brick to magnesia = 1218 °C - (3/70)(4643.7) = 1019 °C

  magnesia to steel = 1019 °C -0.2(4643.7) = 90.06 °C

_____

<em>Comment on temperatures</em>

Most temperatures are rounded to the nearest degree. We wanted to show the small temperature drop across the steel plate, so we showed the inside boundary temperature to enough digits to give the idea of the magnitude of that.

5 0
3 years ago
The temperature of a system rises by 10 °C during a heating process. Express the rise in temperature of K, R, and °F.
Lorico [155]

Explanation:

Given T = 10 °C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (10 + 273.15) K = 283.15 K

<u>T = 283.15 K </u>

The conversion of T( °C) to T(F) is shown below:

T (°F) = (T (°C) × 9/5) + 32  

So,

T (°F) = (10 × 9/5) + 32 = 50 °F

<u>T = 50 °F</u>

The conversion of T( °C) to T(R) is shown below:

T (R) = (T (°C) × 9/5) + 491.67

So,

T (R) = (10 × 9/5) + 491.67 = 509.67 R

<u>T = 509.67 R</u>

6 0
3 years ago
How do you make a robotic dog
fredd [130]
In order to create a robotic dog, you are needing the necessary parts to create Goddard from Jimmy nutreon boy genius
7 0
3 years ago
Read 2 more answers
A water supply agency is planning to add two reservoirs to its system. Water will flow from Reservoir A to Reservoir B via a 10,
NikAS [45]

Attached is the solution to the above question.

3 0
3 years ago
Other questions:
  • The four strokes in a four stroke cycle engine in proper order.
    7·1 answer
  • What is the difference between a Datum and a Datum Feature? a) A Datum and Datum Feature are synonymous. b) A Datum is theoretic
    14·1 answer
  • A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
    5·2 answers
  • A logic chip used in a computer dissipates 3 W of power in an environment at 120°F, and has a heat transfer surface area of 0.08
    11·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • When -iron is subjected to an atmosphere of hydrogen gas, the concentration of hydrogen in the iron, CH (in weight percent), is
    5·1 answer
  • Block D of the mechanism is confined to move within the slot of member CB. Link AD is rotating at a constant rate of ωAD = 6 rad
    11·1 answer
  • A typical aircraft fuselage structure would be capable of carrying torsion moment. a)True b)- False
    12·1 answer
  • Do you think the industrial revolution helped or hurt workers? Why?
    8·1 answer
  • The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!