1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
10

I need solution for this question ​

Engineering
1 answer:
andriy [413]3 years ago
5 0

Explanation:

hi I am new to this app ..............

You might be interested in
A 5000-lb truck is being used to lift a 1000-lb boulder B that is on a 200-lb pallet A. Knowing that the truck starts from rest
artcher [175]

Answer:

Explanation:

Total weight being moved = 5000+1000+200

= 6200 lb .

Force applied = 700 lb

= 700 x 32 = 22400 poundal .

acceleration (a) = 22400 / 6200

= 3.613 ft /s²

To know velocity after 6 ft we apply the formula

v² = u² + 2as

v² = 0 + 2 x 3.613 x 6

43.356

v = 6.58 ft/s

4 0
3 years ago
Alyssa works for an engineering firm that has been hired to design and supervise the construction of a highway bridge over a maj
Colt1911 [192]

Answer:

I'm going to make a list of everything you need to consider for the supervision and design of the bridge.

1. the materials with which you are going to build it.

2. the length of the bridge.

3. The dynamic and static load to which the bridge will be subjected.

4. How corrosive is the environment where it will be built.

5.wind forces

6. The force due to possible earthquakes.

7. If it is going to be built in an environment where snow falls.

8. The bridge is unique,so   the shape has a geometry that resists loads?.

9. bridge costs.

10. Personal and necessary machines.

11. how much the river grows

3 0
3 years ago
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
Explain how smart materials can be used by manufacturers to improve health and safety for children's products and goods.​
Ierofanga [76]

...simplify devices, reducing weight and the chance of failure.

6 0
2 years ago
La extensión de un resumen debe estar en un rango de _________ del texto inicial. a)25 a 35 % b)10 a 20 % c)15 a 20 % d)20 a 25
mestny [16]

Answer:

b)

Explanation:

because it is correct

3 0
3 years ago
Other questions:
  • An isentropic steam turbine processes 5.5 kg/s of steam at 3 MPa, which is exhausted at 50 kPa and 100°C. Five percent of this f
    13·1 answer
  • True or false? Don't break or crush mercury-containing lamps because mercury powder may be released.
    8·1 answer
  • Members of the student council have been asked by their
    5·1 answer
  • Determine the minimum force P to prevent the 30 kg uniform rod AB from sliding. The contact surface at B is smooth, whereas the
    13·1 answer
  • Due at 11:59pm please help
    14·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • Suppose that the voltage is reduced by 10 percent (to 90 VV). By what percentage is the power reduced? Assume that the resistanc
    10·1 answer
  • When a user process is interrupted or causes a processor exception, the x86 hardware switches the stack pointer to a kernel stac
    13·1 answer
  • The acceleration of a point is given. a = 20 t m/s2 When t=0, s = 50 m and v = -8 m/s. What are the position and velocity of the
    13·1 answer
  • What is the creative process that helps you overcome writer's block called?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!