Answer:
option D is true.
Step-by-step explanation:
The right-angled triangle is shown.
From the right-angled triangle,
The angle Ф = 60°
We know that the trigonometric ratio
tan Ф = opposite / adjacent
Thus,
tan 60 = 4 / n
√3 = 4/n
n = 4/√3
Thus,
n = 4/√3
= (4 × √3) / (√3 × √3)
= 4√3 / 3
Thus,
n = 4√3 / 3
Using Pythagorean theorem
m = √n²+4²





Thus,
Therefore, option D is true.
Answer:
Infinite number of solutions.
Step-by-step explanation:
Are the equations written correctly? They are identical. Since they overlap, every point is a solution for as long as the lines reach. Since no one is stopping them, the answers are infinite.
I'm assuming
is the shape parameter and
is the scale parameter. Then the PDF is

a. The expectation is
![E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E2e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
To compute this integral, recall the definition of the Gamma function,

For this particular integral, first integrate by parts, taking


![E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle-xe%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20x)
![E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E%5Cinfty%20e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
, so that
:
![E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cfrac32%5Cint_0%5E%5Cinfty%20y%5E%7B-1%2F2%7De%5E%7B-y%7D%5C%2C%5Cmathrm%20dy)
![\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}](https://tex.z-dn.net/?f=%5Cboxed%7BE%5BX%5D%3D%5Cdfrac32%5CGamma%5Cleft%28%5Cdfrac12%5Cright%29%3D%5Cdfrac%7B3%5Csqrt%5Cpi%7D2%5Capprox2.659%7D)
The variance is
![\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2-2XE%5BX%5D%2BE%5BX%5D%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
The second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac29%5Cint_0%5E%5Cinfty%20x%5E3e%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Integrate by parts, taking


![E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle-x%5E2e%5E%7B-x%5E2%2F9%7D%5Cbigg%7C_0%5E%5Cinfty%2B2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
![E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle2%5Cint_0%5E%5Cinfty%20xe%5E%7B-x%5E2%2F9%7D%5C%2C%5Cmathrm%20dx)
Substitute
again to get
![E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle9%5Cint_0%5E%5Cinfty%20e%5E%7B-y%7D%5C%2C%5Cmathrm%20dy%3D9)
Then the variance is
![\mathrm{Var}[X]=9-E[X]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BX%5D%3D9-E%5BX%5D%5E2)
![\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cmathrm%7BVar%7D%5BX%5D%3D9-%5Cdfrac94%5Cpi%5Capprox1.931%7D)
b. The probability that
is

which can be handled with the same substitution used in part (a). We get

c. Same procedure as in (b). We have

and

Then

The coordinates of the vertices of the triangle are
(–8, 8), (–8, –4), and<span> (10, –4)</span>.
Consider QR the base of the triangle. The measure of the base is b = 18 units, and the measure of the height is h = <span>12</span> units.
The area of triangle PQR is<span>108</span> square units.
Amount =$48003.20
Step-by-step explanation:
Here apply the compound interest formula;

where;
P=Principal amount invested = $37500
r=rate of interest as a decimal, 2.5% =0.025
n=number of compounding per year=1
t=time period the amount in invested=10
In our case, the amount after investing will be;

Interest earned after the period= $48003.20-$37500 =$10503.20
Learn More
Compound Interest formula application: brainly.com/question/7014337
Keywords: inherit, sum, money, interest
#LearnwithBrainly